

A finite element model of the THOR-k dummy for aerospace and aircraft impact simulations

Motivation

Improve Safety Analysis

- Estimated 85% survivability of all aircraft crashes. [Shanahan 2004]
- Spaceflight Safety Standards
- Restraint Systems & Seat Technology

Dummy Testing

- Test Device for Human Occupant Restraint (THOR)
- Potential in Aerospace Field
- Limited Multidirectional Evaluation

FE modeling

- Reduced Cost and Time
- Less Limited
- Sensitivity and Design Optimization

Multipurpose Crewed Vehicle (MPCV) - Water Landing

x_z

Pilot Ejection

Goals

1) Update and Improve the THOR FE model to specifications of the latest mod kit (THOR-K)

2) Evaluate the kinematic and kinetic response of the FE model in frontal, spinal, and lateral impact loading conditions.

THOR-K Dummy and Model Model

The latest version of THOR

Head/Neck: Re-designed (head parts, OC-

Joint, cable guides)

Thorax: Implemented IR-TRACC thoracic

displacement measurement

Pelvis: Re-designed

Lower Limb: Re-designed (knee joint, femur,

foot)

Ridella, Stephen A., and Daniel P. Parent. "Modifications to improve the durability, usability and biofidelity of the THORNT dummy." Proceedings of the 22nd ESV Conference.

FE Model Updates

- VT-Head/Neck
 - Re modeled head parts
 - Simplified OC-Joint
- NHTSA Collaborators
 - Thorax, Pelvis, Lower Limb

~ 221k nodes / 443k elements

~ 290k deformable elements

 $\sim 0.063 \, \mu s$

Development, Calibration and Validation of Head-Neck THOR-k FE Model

Part Updates

Developed THOR-k head-neck model

Instrumentation

Development, Calibration and Validation of Head-Neck THOR-k FE Model

Development, Calibration and Validation of Head-Neck THOR-k FE Model

Updates to Head-Neck THOR-k FE Model: Development

Part Updates

- Modeled CAD part geometries
- Simplification of OC-Joint

Head CG Validation

- Ballast Adjustment
- Spec. Tolerance

Instrumentation

Part Updates

Updates to Head-Neck THOR-k FE Model: Calibration Tests

Biomechanical Requirement NBDL Test Series

Frontal & Lateral

Yaguchi et. al 2007

<u>Certification</u> <u>Pendulum Test Series</u>

Frontal, Lateral, & Rearward

FMVSS 216

Certification Test Head Impact

Frontal Impact

GESAC-05-04

Updates to Head-Neck THOR-k FE Model: Calibration Protocol

- Multi-aspect curve rating system
- Proposed SAE ISO Standard
- Developed by PDB

- Multi-aspect curve rating system
- Proposed SAE ISO Standard
- Developed by PDB

- Multi-aspect curve rating system
- Proposed SAE ISO Standard
- Developed by PDB

- Multi-aspect curve rating system
- Proposed SAE ISO Standard
- Developed by PDB

Updates to Head-Neck THOR-k FE Model: Calibration (example)

Updates to Head-Neck THOR-k FE Model: Validation

Updates to Head-Neck THOR-k FE Model: Validation

Full Dummy Testing

Performed at WPAFB

- THOR-K ATD
- Based on Historic Volunteer Tests
- Horizontal impulse accelerator

Test Directions

- Frontal
- Spinal
- Lateral

Simulation Setup

Seat Model

54

Belt Model

Belt Material Characterization

Testing

- Uniaxial Loading
- 1 kN load @ 1 mm/s

Results

- Developed Force/Strain Curve
 - Belt material

Simulation Conditions

Boundary Conditions

- Sled Acceleration
- Gravity Applied to all Parts
- Stress Initialization
- Belt Constraints

Acceleration Pulse

Simulation Conditions

- Sled Acceleration
- Gravity Applied to all Parts
- Stress Initialization
- Belt Constraints

Acceleration Pulse

Spinal:10g-40 ms

Simulation Conditions

Boundary Conditions

- Sled Acceleration
- Gravity Applied to all Parts
- Stress Initialization
- Belt Constraints
- Acceleration Pulse

Instrumentation

Frontal Results - Overview

LS-DYNA keyword deck by LS-PrePost Time = 152

Frontal Results – Frontal Acceleration

- High CORA Rating
- Similar Peaks
- Faster rise time in head and pelvis

Frontal Results – Frontal Force

- Similar response in lower neck
- **Upper Neck & Lumbar Spine**
 - **Faster Rise**
 - Larger Peak

Spinal Results - Overview

CORA Rating: .874

Spinal Results – Anterior Acceleration

- Similar Peaks
- Similar Rise in head and chest
- "Bouncing" Pelvis

Spinal Results- Anterior Force

- Similar upper body
- High lumbar over prediction

Lateral Results - Overview

LS-DYNA keyword deck by LS-PrePost Time = 152

Lateral Results – Lateral Acceleration

- Similar timing
- Large peaks in head & pelvis
- Largely dependent on positioning of impact plates

Lateral Results – Lateral Force

Larger secondary impact

Conclusions

- The THOR-K FE Head/Neck model was validated.
- The THOR FE model reasonably predicts the THOR-K dummy response in the tests evaluated.
- Differences are observed in the model response which indicate necessary calibration of the model.

Next Steps: Full Calibration

Next Steps: Human Model Comparison

Next Steps: THUMS & GHBMC Comparison

THUMS

GHBMC

Limitations & Future Work

Limitations

Lack of material testing for THOR-k material model characterization.

Future Work

- Calibration and Validation of the full THOR-K FE model
- Simulate the same tests with Human FE Models (THUMS and GHBMC)
- Compare Human FE model data against historic volunteer test data recorded at Wright Patterson Air Force Base.
- Simulate Full Scale Aerospace Crashes

Acknowledgements

- NASA
- Wyle
- **NHTSA**
- Simulia
- JARI
- **TOYOTA**
- **WPAFB**

Questions?