Halon Replacement

Federal Aviation Administration

Halon Replacement in the Civil Transport Aircraft Engine Nacelle (2013)

Presented to: Seventh Triennial International Fire & Cabin Safety Research Conference
By: Doug Ingerson, Testing Engineer
Date: 5 December 2013

Presentation Overview

Encompassing conditions

...who, how, why, the threat, threat mitigation, halon elimination

A test process

...a history, some existing outcomes, the future ?

- Overview of the current test process
- Description of the FAA test article

Use of trade and/or manufacturer product names or services does not constitute endorsement.

- Who is involved, why, and how...
 - Who?
 - Principally, large civil transport aircraft propulsion and auxiliary power system (APS) interests
 - Industry and government
 - How?
 - Task group⁽¹⁾ interaction within the FAA International Aircraft Systems Fire Protection Working Group⁽²⁾
 - Why?
 - Providing assistance to satisfy FAA regulations requiring adequate fire extinguishing systems for aircraft engine/APS fire zones without using halon

Circumstances in the real world...

- Circumstances in the turbine enclosure :
 - Spatial volume of complex structure with forced ventilation
 - Flowing flammable liquids normally contained in plumbing
 - Resident ignition sources; electrical arc, "hot" surfaces
 - Wide range of local conditions during operations
 - Failure can create conditions resulting with undesired fire
- The mitigation of the fire threat
 - Passive fire protection component "fire worthiness"
 - Active fire protection ventilation, limited fuel/ignition source elimination, fire detection & extinguishment systems

Circumstances in the real world...

- Basis for the threat mitigation in the FAA regulations
 - The broad foundation : 14 CFR §25.1181 §25.1207
 - The specific interest...
 - 14 CFR §25.1195 Fire Extinguishing Systems
 - Demonstrating acceptability for fire extinguishing systems
 - » FAA Advisory Circular (AC) 20-100(3)
 - » Acceptable performance at "worst"-case condition(s)

- Circumstances in the real world...
 - State-of-the-art is roughly a 30 year evolution, where it's typically...
 - Based on a pressure vessel :
 - mounted in the engine pylon, wing or fuselage
 - connected to the fire zone with plumbing
 - manually discharged from the flight deck
 - containing halon 1301 and nitrogen (N_2)
 - discharged through open-ended tubes and drilled holes
 - Shown acceptable with a Statham-derivative gas analyzer
 - Halon 1301 is being eliminated
 - 1993, FAA halon replacement program officially announced⁽⁴⁾

- Revisional history/engine halon replacement...
 - 1993, revision 1, FAA halon replacement program began
 - Engine halon replacement to be handled by US Department of Defense (DoD) in a 3-phase program
 - Culminated with a design model for HFC-125(5)
 - Civil interests wanted additional choices in FAA format
 - 1996, revision 2, minimum performance standard, halon replacement, engine nacelle (MPSe)
 - Halon 1301 versus replacement candidate; extinguishant injection into forced flow against the "robust fire"
 - Much learned from this iteration plus that from the US DoD
 - 2002, discontinued, "robust fire" too unreliable

- Revisional history/engine halon replacement...
 - 2003, revision 3, MPSe
 - Empirical basis; halon 1301 versus replacement candidate; extinguishant injection into forced flow against forced reignition
 - Experience with halon 1301 and 5 replacement candidates
 - HFC-125, CF3I, 2-BTP, FK-5-1-12, and KSA⁽⁶⁾
 - successful outcomes
 - » design concentration must reside in fire zone for $1\!\!\!/_2$ second
 - » 17.6%v/v HFC-125, 7.1%v/v CF3I or 6.1%v/v FK-5-1-12
 - 2008, discontinued
 - replacement candidates tending less halon-like; empiricism failing
 - design concentrations shrinking to unreasonable values

- Revisional history/engine halon replacement...
 - 2010, revision 4, MPSe
 - Replacement candidate injection into forced flow against forced reignition; compared to historical halon 1301 performance
 - Currently active
 - Draft format is publically available⁽⁷⁾
 - Incorporates all learned to date
 - Likely accounts for what the future may offer
 - Experience with 1 candidate, KSA

Future

- Revision 3 outcomes remain viable; rework not planned
- Currently drafting a report on MPSe activity & process
 - All MPSe development, 1996 present (2014?)
 - Design criteria for HFC-125, CF3I & FK-5-1-12 from MPSe rev 3
 - MPSe rev 3 & 4 processes
 - MPSe revision 4 will editorially change
 - experiential information will disappear from procedural text
 - experience will reappear in report body
- Subsequent reports to contain FK-5-1-12 & KSA testing
- A revision 5 ? FAATC NFS #2 ? a post-FAATC NFS ?

Administration

Overview of the Current Process

The MPSe Test Process

- Prior to any MPSe activity, the applicant identifies :
 - The airframe & replacement candidate to the aviation authority
 - The justification for testing; i.e. satisfy preliminary requirements
- MPSe sequencing
 - Satisfy preliminary requirements (before testing in any MPSe forced flow...)
 - safety : life, maintained flight safety during candidate use
 - usage compatibility : materials, shelf-life, operational envelope
 - identify established preliminary design criteria
 - Conduct generic simulator & possibly "high"-fidelity testing
 - Report observations/outcomes (i.e. includes the recommended criteria for certification)

** Successful MPSe outcome does not assure certification

Overview of the Current Process

MPSe Testing Sequence

- Generic simulator testing (always required)
 - Accomplished in an acceptable test fixture capable of...
 - 2 different forced ventilation flows
 - replacement candidate storage, conditioning, & delivery
 - several fire threats; spray & pool combustion for varied fuel types
 - Generic testing sequence
 - establish candidate design criteria in the 2 forced flows
 - challenge and acceptably defeat all fire threat conditions
 - » candidate assessed using forced reignition behavior (as it compares to historical performance in the FAATC NFS...)
 - » may require adjusting design criteria during testing progress
 - identify acceptable design criteria & recommend for certification

Overview of the Current Process

MPSe Testing Sequence

- "High"-fidelity testing (not always required)
 - Analogous to testing in the fire zone of an actual engine
 - Applicability
 - decision to perform lies with aviation authority
 - relates to the difference between the circumstances of the candidate and the state-of-the-art
 - A demonstration test
 - a "go/no-go" test of the design criteria recommended for certification; <u>not</u> a rework of the generic test phase...
 - conversation occurs between applicant and aviation authority
 - test conditions are defined as local circumstances dictate

- Multiple components
 - Ventilation supply equipment; blower, 2 heat sources
 - Test section
 - Receives ventilation flow & firex system injection
 - Contains spray and pool fire threats
 - Internal environment constantly monitored
 - Fire extinguishing (firex) system
 - Exhaust ducting
 - Telemetry; visual and numerical data collection

Controlled during test from adjacent space

Test section

Seventh Triennial International Fire & Cabin Safety Research Conference Philadelphia, PA, USA 2-5 December 2013

sta 502

sta 527

IDEALIZED TEST SECTION DIMENSIONS

1.22 m (4 ft) OD SHELL

0.61 m (2 ft) OD CORE ~ 3.1 m (10.3 ft) LONG

sta 477

UP

AIRFLOW

FWD

 Ventilation supply

APPROACH DUCT

Seventh Triennial International Fire & Cabin Safety Research Conference Philadelphia, PA, USA 2-5 December 2013

Seventh Triennial International Fire & Cabin Safety Research Conference Philadelphia, PA, USA 2-5 December 2013

Federal Aviation Administration

• Firex system (halon 1301 injection plumbing)

Seventh Triennial International Fire & Cabin Safety Research Conference Philadelphia, PA, USA 2-5 December 2013

Federal Aviation Administration

 Test section,
 spray fire threat

IDEALIZED FUEL PUDDLE DIMENSIONS 27.4 cm (10.8 in) WIDTH 52.8 cm (20.8 in) LENGTH 13 mm (0.5 in) DEPTH ~ FUEL SITS IN A WATER-JACKETED PAN ~

 Test section, pool fire threat

Referable Information

- 1. <u>http://www.fire.tc.faa.gov/systems/engine/engine.stm</u>
- 2. http://www.fire.tc.faa.gov/systems.asp
- 3. <u>http://www.faa.gov/regulations_policies/advisory_circulars/index.cfm/go/document.information/documentID/22046</u>
- 4. FAA program, "Halon Replacement Performance Testing", Federal Register, June 17, 1993, pp. 33477-33481.
- Bennett, J.M., Bennett, M.V., 1999, "Aircraft Engine/APU Fire Extinguishing System Design Model (HFC-125)," Report No. AFRL-VA-WP-TR-1999-3068, Air Force Research Laboratory and Booz, Allen, and Hamilton, Incorporated, Wright Patterson Air Force Base, OH; available from http://www.fire.tc.faa.gov/pdf/systems/designguide.pdf
- 6. Further identifying the replacement candidates worked with name in presentation : a chemical name, chemical formula, molecular weight, example of a product name HFC-125 : pentafluoroethane, C_2HF_5 , 120.02 g/mol, DuPont FE-25 CF3I : iodotrifluoromethane, CF_3I , 195.91 g/mol, not known 2-BTP : 2-bromotrifluoropropene, $C_3H_2BrF_3$, 174.95 g/mol, not known FK-5-1-12 : dodecafluoro-2-methylpentan-3-one, $C_6F_{12}O$, 316.04 g/mol, 3M Novec 1230 KSA : sodium bicarbonate, NaHCO₃, 84.007 g/mol, Kidde Aerospace KSA
- 7. <u>http://www.fire.tc.faa.gov/pdf/systems/MPSErev04_MPSeRev04doc-02submtd.pdf</u>

Use of trade and/or manufacturer product names or services does not constitute endorsement.

