FAA 7th Triennial International Fire & Cabin Safety Research Conference December 2nd~5th, 2013

Elementary Experimental Study of the Burner Used in FAA Fire Test: <u>NexGen Burner</u>

December 5th. 2013

Fire Test Center University of Cincinnati, Cincinnati, USA

Yi-Huan Kao, Samir B. Tambe, John R. Hasselbeck, San-Mou Jeng

Agenda

- Fire Test Regulations for Powerplant & NexGen Burner
- Impact of Turbulator Configuration
- Impact of TC Size
- Impact of Fuel Flow Rate
- Impact of Air Flow Rate
- Impact of Air Temp.
- Fire Test Results by Different Burner Orientation
- Temperature Mappings of NexGen Burner
- Conclusions and Recommendations

FAA Fire Test Regulations for Power Plant

		AC20-135, AC33.17-1A	ISO2685: 1998	
	ТС Туре	Bare Junction, Type K	Bare Junction, Type K	
lemperature ibration	TC Size (sheath dia)	1/16 – 1/8 inch	< 3 mm (0.120 inch)	
	TC Wire Size AWG 22 (0.025 inch) – AWG 30 (0.010 inch)		0.6 – 1 mm (0.025 – 0.040 inch)	
Flame	Individual TC Temperature	2000 ± 150 °F	1100 ± 80 ℃ (2012 ± 144 °F)	
	Average of all TCs	≥ 2000 °F	N/A	
Heat Flux alibration	Measurement Device	¹ / ₂ " O.D. copper tube; Calorimeter (optional)	1/2" O. D. copper tube	
Heat Calibr	Heat Flux Requirement	≥ 9.3 BTU/ft^2-s	116 ± 10 kW/m^2 (10.2 ± 0.9 BTU/ft^2-s)	

Recommended burners: stated in FAA powerplant report 3A

NexGen Burner

Background of NexGen Burner:

- Kerosene burners listed in FAA Powerplant report 3A are out of production
- These burners do not have provisions to control and meter air flow rate
- NexGen burner was designed to replace old kerosene burners
- NexGen burner has independent air and fuel flow rate controls, and air flow rate is controlled and metered by pressure setting at sonic choke
- NexGen burner should be robust and repeatable to provide consistent fire test results

Fire Test Setup and Calibration Stand

Impact of Turbulator (calibration)

original, w/o tab

NexGen Burner w/o cone Original v.s. Modified Turbulator

Record: 3000 fps/ Playback: 15 fps

Short Tabs (1"x3/4")

Long Tabs (1 1/8"x3/4")

Tab	тс	Jet-A (GPH)	Air (SCFM)	A/F	T_avg (F)	T_max (F) T_min (F)	Heat Flux (BTU/ft^2-s)	
	1 /0"	2 01	61.2	12.2	2015	2131	11 /	The second second
INA	NA 1/8" 3.01 6	61.2 13.2	15.2	2015	1928	11.4	-cub	
Chart	1/8"	2.90	(1.2	1 1 1	2011	2095	10 F	24
Short	1/8	2.86	61.2	14.1	2011	1884	10.5	
Long	1 /0″	2 4 4	FF 2	14.0	2007	2063	0.7	
Long	1/8"	2.44	55.2	14.9 2007 19		1916	9.7	

- Federal Aviation Administration
- Use of "tabs" requires less fuel to satisfy temperature requirement
 - Burner performance is sensitive to the details of turbulator's geometry and configuration

Impact of TC size

	Fuel (GPH)	Air (SCFM)	Temp. (F)	Heat Flux (BTU/ft^2-s)	В. Т.	
small TCs	2.14	60.4	1908	9.0	15m0s	
big TCs	2.25	62.2	1920	9.5	11m30s	

Front Side of Test Panel (after 10 mins)

UNIVERSITY OF

Cincinnati

flame calibrated by <u>big TC</u>

flame calibrated by <u>small TC</u>

- TC size and TC wire size can affect calibration and fire test result
- Using small TCs, calibration requirements achieved by using less fuel flow rate, resulting in longer burnthrough time
- Tolerance for TC sizes in specifications should be made narrower to ensure consistent results

Impact of Fuel Flow Rate

	test conditions		calibrat		
	Fuel (GPH) Air (SCFM)		Temp. (F)	Heat Flux (BTU/ft^2-s)	В. Т.
2.25 GPH	2.25	67.6	1920	9.5	15m0s
2.62 GPH	2.62 66.7		2013	11.5	10m10s

UNIVERSITY OF

Cincinnati

- Calibration data and fire test result are both quite sensitive to the change of fuel flow rate.
- * Fuel flow rate and it's tolerance should be specified in the regulations.

Impact of Air Flow Rate

	test cor	nditions	calibrat		
	Fuel (GPH) Air (SCFM)		Temp. (F)	Heat Flux (BTU/ft^2-s)	В. Т.
more air	2.25 67.6		1920	9.4	15m0s
baseline case	2.25 62.2		1920	9.5	11m30s
less air	2.25 57.7		1937	9.5	10m0s

Front Side of Test Panel (after 10 mins)

- Air flow rate did not have significant impact on calibration
- Burn through times increased with increasing air flow rates
- The air flow rate and it's tolerance should be specified in the regulations.

Impact of Air Temperature

	test conditions			calibrat		
	Fuel (GPH)	Pressure, Air (psig)	Air Temp. (F)	Temp. (F)	Heat Flux (BTU/ft^2-s)	В. Т.
cold air, 60 psig	2.62	60	82	2013	11.5	10m10s
hot air, 60 psig	2.62	60	134	2009	11.5	9m0s
cold air, 57 psig	2.62	57	81	2006	11.5	8m40s

- Only pressure setting of sonic choke might not be enough to ensure the repeatability of fire test.
- Air mass flow rate depends on the air temperature (air density) and pressure setting of sonic choke (volume flow rate).
- Burnthrough time is observed to depend on the air mass flow rate even for different inlet temperature. Air mass flow rate should be specified in the regulations.

Impact of Burner Orientation

	test cor	nditions	calibrat		
	Fuel (GPH)	Air (SCFM)	Temp. (F)	Heat Flux (BTU/ft^2-s)	В. Т.
0º (horizontal)	2.25	67.6	1920	9.4	15m0s
15°	2.36	66.7	1922	10.3	10m40s
30 °	2.55	66.7	1928	11.0	9m10s
45 °	2.61	66.7	1929	11.4	10m0s

Front Side of Test Panel (after 10 mins)

- Calibration location was maintained at 1 inch above burner centerline.
- As inclination angle increased, higher fuel flow rate was needed to maintain similar calibration temperature. Heat flux increased with increasing fuel flow rate.
- Burner performance is observed to change with orientation. Air and fuel mass flow rates should be specified for different orientation angles.

Temperature Mappings of NexGen Burner

Conclusions and Recommendations

- 1. Adding the tabs could improve the efficiency of NexGen Burner and improve the uniformity of flame.
- 2. Using the smaller TCs, a similar flame temperature could be reached by less fuel flow rate and a longer burnthrough time was observed by conducting fire test.
 - The accepted range of TC size should be more narrow than the current guidance to ensure the fire test result could be more consistent.
- 3. NexGen burner's performance is very sensitive to fuel flow rate change.
 - The fuel flow rate should be monitored and reported for fire tests. and the tolerance of fuel flow rate should be specified in the guidance.
- 4. Even though the air flow rate does not affect the calibration results of NexGen burner, but it has a clear impact on fire test results.
 - The air mass flow rate also should be monitored and reported for fire tests, and it's tolerance should be regulated as well.

- 5. The air temperature could influence the air mass flow rate for constant pressure setting of sonic choke
 - > The range of air supply temperature should be specified in the guidance.
 - The air mass flow rate should be monitored during the fire test.
- 6. As the inclination of NexGen burner increased, the flame becomes more concentrated, compact and uniform. The damage of test sample is also more severe from observation.
 - The fuel/ air flow rate settings might need to be stated according to the different burner orientation.

Acknowledgement

The presented work is supported by a research grant from the FAA technical center.

