Discovery Channel Plane Crash

Triennial Cabin Safety Conference December 3, 2013

Thomas H. Barth, PhD thomas.barth@ntsb.gov

Objectives

Visualize Crash Test Sequence

Aircraft Interior Regulations

 Survivability / Design Limits

Crash PulseB727 Crash vs Reg's

Conclusions/Observations

Aircraft on Approach, Pilots Parachute Out

B727 Controlled by Remote (Chase Aircraft)

Historical Perspective

9/23/62 Lockhead Constellation Accident NTSB Investigation Concluded: Interior/Seats hindered evacuation

1981 NTSB Study (NTSB-AAS-81-2)

Surveyed 77 Survivable accidents 1970 to 1980 Poor cabin design contributed to fatalities in 60% of the accidents

Regulations, How are they doing?

- 1989 Dynamic Impact Regulations
- 2000 FAA Cost / Benefit Study (DOT/FAA/AR-00/13)
- 2005 Operational Rule (effective Oct. 2009)
 - New A/C Deliveries

• Is Test Standard Representative?

Video: External (Geo-Stabilized Helicopter)

7

Discovery Plane Crash Data

- Video (Go Pro and High Speed) All
- String Pots (Floor Crush) Barth
- Floor Accelerations Barth
- Test Dummies Dr. Cindy Bir Wayne State Univ., Barth
- General Flight Dynamics / Structure Prof. John Hansman, MIT
- General Accident / Black Box Anne Evans, former senior acc. inv., AAIB UK

String Pots Forward Cargo

Sensors Row 13, 20, 27

Instrumentation Box

- Test Dummies
- Accelerations (DTS E-Slice)

Emergency Landing Conditions

Test	GA Aircraft	Transport	Rotorcraft
		Aircraft	(all)
1. Downward /	tp = 0.050 s (crew)	tp = 0.080 s	tp = 0.031 s
Forward	tp = 0.060 s (pass.)	gp = 14 g	gp = 30 g
	gp = 19 g (crew)	$\Delta V = 10.7 \text{ m/s}$	$\Delta V = 9.1 \text{ m/s}$
	gmax = 19 g (pass.)	(passenger)	
	$\Delta V = 9.5 \text{ m/s}$		
2. Forward /	tp = 0.050 s (crew)	tp = 0.090 s	tp = 0.071 s
Lateral	tp = 0.060 s (pass.)	gp = 16 g	gp = 18.4 g
	gp = 26 g (crew)	$\Delta V = 13.4 \text{ m/s}$	$\Delta V = 12.8 \text{ m/s}$
	gp = 21 g (pass.)	(passenger)	
	$\Delta V = 12.8 \text{ m/s}$		

Occupant Survivability

- Cockpit
 - Survivable Space
 - High Impact Loads
- Rows 1-7 (Right) & 1-11 (Left)
 Non-Survivable
- Rows 8-16 (Fwd of Wing),
- Rows 17-23 (Overwing),
- Rows 24-32 (Aft of Wing),
 - All Intact, All Survivable
 - Evacuation Issue with Cables

Cockpit Video

Crash Pulse Selection Method

Large Aircraft Crash Test Challenges

- Impact time / Duration
 - Methods: Best Fit, 5% of Peak G, other...
- Response Relative to Location
 - Force, Velocity, Crush, Residual Velocity

Example: Best Fit, Each Component (X, Z)

- Triangle Shape
- Qualitative Assessment of Fit
- Qualitative Assessment of Primary Impact
- "Primary Impact" Data Exhibited:
 - Impact < 0.200s, (followed by trend toward zero, then transient to smaller, secondary peak)
- Also Looked at:
 - Polynomial Fit, Moving Avg, Averaged Rows

X Peak =~11.5 g, at ~ 0.052s, Onset = 221 G/s Y Peak = ~5.7 g, at (NA) Z Peak = ~8.6 g, at ~ 0.077s, Onset = 112 G/s

Row 20 Floor Accelerations

X Peak =~7.1 g, at ~ 0.061s, Onset = 116 G/s Y Peak = ~5.1 g, at (NA)

Z Peak =~9.6 g, at ~ 0.033s, Onset = 291 G/s

16

Results: Fest Fit, Each Component (X, Z)

- Not Satisfied
- Too Much Interaction between X and Z
- Conclusion: Use Resultant

Resultant = $\sqrt{x^2 + y^2 + z^2}$

- Initial time based on 5% of Peak Acceleration
- Total Duration set at Double Time to Peak

Row 20 Resultant

Row 27 Resultant

Resultant = $\sqrt{x^2 + y^2 + z^2}$

- Method: OK
- Limitations:
 - Neglects Large Portion of Impact
 - Specific to Aircraft Cabin Section (Forward, Overwing, Aft)

New Modifications

- Allow Transient, Longer Pulse
- Average the Resultants of Rows 13, 20, 27

Avg Resultant Rows 13, 20, 27

Plane Crash "Ideal" Impact Pulse

Regulatory Comparison

- Peak G about 30% lower than Regulatory
- Onset Approximately 120 G/s
 - Transport Aircraft Pulses ~ 175 G/s
 - General Aviation Pulses ~ 350 to ~ 520 G/s
- Total Velocity Change
 - About Double the Regulatory Pulses

Conclusions

- Plane Crash Test
 - Well within Design Limits
 - Clearly Long, Drawn out Impact (for most of Cabin)
- Plane Crash "Ideal" Pulse Reasonable
- Regulatory Pulses
 - Good Representation of Survival / Design Limits
 - Represent only Primary Impact (Capture Only Small Portion of Total Velocity)

Observations

- Influence from Experiment and Test Equipment Limitations? (Velocity/Crush)
- Typical Survivable Crash
 - Long and Drawn out
 - Primary Impact Mitigated
- Need Better Understanding of:
 - Secondary Response
 - Cumulative Effects

Thank You!

thomas.barth@ntsb.gov