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• Between 2003 and 2004, full-scale fire tests* 

were conducted at the FAA Tech Center in 

the cargo compartments of two types of 

aircraft: Boeing 707, McDonnell Douglas DC10. 
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Introduction 

* Blake, D. and Suo-Anttila, J., Aircraft Cargo Compartment Fire Detection and Smoke Transport Modeling, Fire Safety 

Journal, Vol. 43, No. 8, 2008. 

§ Suo-Anttila, J., Gill, W., Luketa-Hanlin, A., and Gallegos, C., Cargo Compartment Smoke Transport Computational Fluid 

Dynamics Code Validation, DOT/FAA/AR-07/27, Federal Aviation Administration, July 2007. 
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• B707 is a narrow-body aircraft 

with no ventilation in its cargo 

compartment of ~25 m3 volume,  

• DC10 is a wide-body aircraft with 

forced ventilation in its cargo 

compartment of  ~100 m3 volume. 

• The test data served to validate 

the FAA smoke transport code§ 

developed by Sandia National 

Labs as a result of a multi-

agency effort over a five year 

period. 



Page 3 of 24 Motivation 
Introduction 

¶ http://code.google.com/p/fds-smv/ 

• The motivation was to implement standardized, feasible and efficient 

certification procedures - for the fire detection devices in cargo 

compartments - by improving the current practices with the help of 

analytical capabilities/numerical modeling.  

• With the same motivation, the current study evaluates a different solver: 

Fire Dynamics Simulator (FDS)¶, developed at the National  Institute of 

Standards and Technology (NIST).  

• FDS solves Navier-Stokes equations for low Mach number thermally-driven 

flow, specifically targeting smoke and heat transport from fires, 

• It has been verified/validated for a number of fire scenarios.  

Objective is to assess the predictive abilities of FDS when applied 

for smoke transport in aircraft cargo compartments.  

Validation metrics: in the first three minutes of fire initiation compare 

• increase in ceiling temperatures and gas concentrations,  

• decrease in light transmissions,  



Boeing 707 

• Narrow-body 

• No ventilation 

• Negligible leakage 

• 3 fire scenarios 

Page 4 of 24 Test set-up 
Methodology: full-scale tests 

♮ Blake, D., Development of Standardized Fire Source for Aircraft Cargo Compartment Fire Detection Systems, FAA 

Technical Note, DOT/FAA/AR-06/21, 2006. 

Ground test measurements: 15 tests with♮ 

• 40 thermocouples 

• 6 smokemeters 

• 3 gas analyzers 
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McDonnell Douglas DC10 

• Wide-body 

• Forced ventilation  

– with a total volume flux of 400CFM 

• Leakage through door 
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Methodology: full-scale tests 

♮ Blake, D., Development of Standardized Fire Source for Aircraft Cargo Compartment Fire Detection Systems, FAA 

Technical Note, DOT/FAA/AR-06/21, 2006. 

Ground test measurements: 15 tests with♮ 

• 45 thermocouples 

• 4 smokemeters 

• 3 gas analyzers 

Door
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Fire source♯ 

• The FAA’s standardized fire source** is a compressed resin block made up of 

pellets of polyethylene, nylon, acrylic, polystyrene, PVC, PBT, etc.,  

• When burned it yields combustion products similar to the actual luggage fires, 

• It had embedded nichrome-wire to enable remote ignition, 

• Its burning was well-characterized with a set of cone calorimetry tests (heat release 

rate, mass loss rate, production rates of CO, CO2, and soot were measured). 

• Ventilation characteristics of the bench-scale and full-scale tests are similar. 

♯ Filipczak, R., Blake, D., Speitel, L., Lyon, R., and Suo-Anttila, J., Development and Testing of a Smoke Generation 

Source, Proceedings of the Fire and Materials Conference, San Francisco, California, 2001. 

** Blake, D., Development of Standardized Fire Source for Aircraft Cargo Compartment Fire Detection Systems, FAA 

Technical Note, DOT/FAA/AR-06/21, 2006. 
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Methodology: bench-scale tests 



• Non-uniform rectilinear grids chosen 

according to the characteristic fire 

diameter: 

 

• 164x180x135 grid points, D*/Δx=10, 

are used for 3.2x6.7x1.4 m3 volume, 

~10 days runtime, 

• Wall material (cargo liner – fiberglass 

epoxy resin) with the following 

property set: 

Page 7 of 24 Model set-up 
Methodology: geometry, grid, materials 

  

Looking from front Looking from side 

Boeing 707 – Test Cases 1, 2 & 3   



• 135x240x81 grid points are used for 5.2x14.0x1.8m3 volume, D*/Δx=5, 

~10 days runtime. 

• Wall material is galvanized steel and is assumed to have the following 

property set: 
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Methodology: geometry, grid, materials 

  

McDonnell Douglas DC10 – Test Case 4 
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Table: Measured radiative fractions for selected fuels¶ 

Production rates 

Determined through mixture fraction formulation with a simple 

reaction of fuel and air, using the species-release rates 

measured in the cone calorimeter ( Ysoot = 0.125, YCO = 0.065) 

Page 9 of 24 Model set-up 
Methodology: yields, radiative fraction 

  

Radiative fraction 

Empirical evidence suggests correlations between radiative heat of combustion and 

yields of CO and soot¶. 

¶ A. Tewarson, Smoke Point Height and Fire Properties of Materials, NIST-GCR-88-555, NIST, Dec 1988. 



0.089 m 

0.23 m 
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Page 10 of 24 Model set-up 
Methodology: input parameters 

• Fire source: flaming resin block: 

• Heat of combustion (HOC) is calculated from the recorded heat release and 

mass loss rates (HOC = 21 kJ/g), 

• Yields of main combustion products: COyield = 0.065, Sootyield = 0.125,  

• Radiative fraction, ΧR = 0.55. 

• Extinction coefficient, KM = 7600 m2/kg. 

• Werner&Wengle wall model for velocity coupled with standard wall 

functions for temperature.  

• Turbulence modeling: dynamic-coefficient Smagorinsky. 

• Scalar transport using Superbee flux limiter. 

• For DC10:  

• Forced ventilation with 400CFM total 

volumetric flow rate, specified inflow velocity 

of 4.6 m/s at air inlets. 

• Leakage model to prevent pressure build-up. 
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Results: B707- Baseline fire scenario  

Boeing 707 – Test Case 1 

• Contourplots of ceiling temperatures at 60 and 90 seconds show that model 

predictions agree with the test data and are within experimental uncertainty. 
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Results: B707- Baseline fire scenario  

• The worst comparison for light 

transmissions is obtained at the 

vertical-mid (Vmid) beam detector. 

Light transmission at CF 

Light Transmission at Vmid 

Boeing 707 – Test Case 1 

• Predicted light transmissions are 

generally in good agreement with 

the measured values. An example 

is shown below for the ceiling 

forward beam detector (CF). 
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Results: B707- Baseline fire scenario  

Boeing 707 – Test Case 1 

• The CO and CO2 predictions follow the experimental mean very closely except 

for those at the gas analyzer TC36, where concentrations of CO and CO2 are 

overestimated. 
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Results: B707- Baseline fire scenario  

Boeing 707 – Test Case 1 

• Various summaryplots can be used for skill assessment: Taylor diagrams, 

Target diagrams and scatterplots. The scatterplots is the simplest.  

Scatterplots Target diagrams Taylor diagrams 
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Results: B707- Baseline fire scenario  

Boeing 707 – Test Case 1 

• In general the agreement between model solutions and experiments is 

within 20% margin (if not better). 

Test case 1 – B707 Baseline fire 
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• Vertical temperatures and 

heat fluxes are out of this 

error margin (not shown). 

This is to be expected 

considering the under 

resolved walls. 

• Scatterplots do not reflect 

experimental uncertainty. 
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Results: B707- Baseline fire scenario  

Test case 1 – B707 Baseline fire 

Boeing 707 – Test Case 1 

• Worst comparisons are for gas concentrations at TC36, and for light 

transmission at vertical mid beam detector. 

Carbon dioxide at TC36 

Light Trans. at Vmid 
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Results: B707- Corner fire scenario 

Boeing 707 – Test Case 2 

• For test case 2 (corner fire), model overestimates the peak ceiling 

temperatures and the peak smoke concentration at the ceiling FWD beam 

detector. 
Test case 2 – B707 Corner fire Light Trans. at CF 
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Results: B707- Side fire scenario 

Boeing 707 – Test Case 3 

• For test case 3 (side fire), overestimation in ceiling temperatures increases 

noticeably. It is likely that the fire location in the test was recorded wrong. 

Test case 3 – B707 Side fire 
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Smoke first felt at the location of 

smokemeter with a five foot path 

length (SMK 5’) as opposed to the 

smokemeter closest to the fire source 

(SMK FWD). 
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Effect of ventilation: DC10 fire scenario 

McDonnell Douglas DC10 – Test Case 4 

• The interplay between momentum and buoyancy determines the flow field: 

• At the early stages of the fire, momentum overcomes buoyancy, hot gases are 

pushed away from the air vents, 

• At the later stages with increased heat release rate, buoyancy is strong enough 

to move hot gases towards the ceiling. 
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Results: DC10 fire scenario 

McDonnell Douglas DC10 – Test Case 4 

• The transient nature of the fire affects the plume signature at the ceiling. 

• At 30s, the maximum concentration is close to the forward of the compartment, 

• At 60s, it moves closer to the fire-source location. 

• At the early stages of the fire, ventilation blows the hot plume away from the fire 

source. Later as the HRR increases buoyancy strengthens and overcomes the 

momentum. 
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Page 22 of 24 Summaryplots 
Results: DC10 fire scenario 

McDonnell Douglas DC10 – Test Case 4 

• Comparisons with the test data is not as successful as those for B707 test 

cases: Gas concentrations and ceiling temperatures are overpredicted. 

Test case 4 – DC10 fire 
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Page 23 of 24 Conclusions 
Conclusions 

The agreement between the model predictions and experimental data 

demonstrates the potential of numerical modeling, and encourages its 

use, as a tool to complement experimental research efforts.  

Conclusion 

Boeing 707 

• Mean flow fields are well-predicted except for the wall heat fluxes, hence the 

slight overestimation of the ceiling temperatures. 

• In the evaluation of model performance, it is important to consider possible systematic 

errors in the test data, as well as the uncertainty in the model-input parameters. 

McDonnell Douglas DC10 

• Although general flow behavior was successfully reproduced, solutions for this 

ventilated compartment are not as good as those of the unventilated 

B707 compartment.   
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