An Overview of FAA Fire Safety R&D Since the Previous Triennial Conference

#### **Gus Sarkos**

Manager, Fire Safety Branch FAA Wm. J. Hughes Technical Center Atlantic City International Airport, NJ 08405

The 7<sup>th</sup> Triennial International Fire & Cabin Safety Research Conference December 2 – 5, 2013 Philadelphia, PA



Federal Aviation Administration

## **Program Overview**

 The Fire Research and Safety program develops the enabling technology to prevent accidents caused by in-flight (main emphasis of current program) and to improve survivability during a post-crash fire.



## **Program Drivers**

- Fire Accidents
- Incidents
- NTSB Recommendations
- New Technology
- New Fire Threats
- EPA Restrictions



## Fire Safety of New Material Technology

- Determine the adequacy of present regulations and advisory material as it applies to new technology materials in aircraft (e.g., composite fuselage and wings)
- Where necessary, develop new test protocols and/or guidance materials.
- <u>Drivers</u>:
  - New test methods would obviate the need for Special Conditions in new composite aircraft
  - New lightweight magnesium alloys are fire resistant





# Fire Safety of New Material Technology

### Major Accomplishments

- Developed a flammability test method and criteria for magnesium alloy seat structure under postcrash fire conditions
- Developed a new prototype flammability test method for composite fuselage materials under in-flight fire conditions
- Developed a test apparatus to measure toxic gas emissions from burnthrough resistant fuselage materials under postcrash fire conditions



#### Flammability Test Method for Magnesium Seat Structure





## Flammability Test Method for Composite Fuselage Materials



**FAA Fire Safety R&D Since the Previous Triennial Conference** December 2 – 5, 2013



### **Toxic Gases Hazard Inside a Burnthrough Resistant Fuselage During a Postcrash Fire**





#### Intermediate Scale Test Apparatus

## Large-Scale Test of Composite Material

FAA Report: DOT/FAA/AR-09/58



## Improve Existing FAA-Required Material Flammability Test Methods

- Supports both FAA and Industry in solving problems encountered with present regulatory/advisory material
- Cooperative effort through International Aircraft Materials Fire Test Working Group
- Drivers:
  - Complexity of fire test standards
  - Inherent fire variability and need for improved test reproducibility
  - High cost burden to industry
  - Planned proposed rulemaking to revamp FAA flammability regulations





## Improved Existing FAA-Required Material Flammability Test Methods

### Major Accomplishments

- Progress in improved standardization of all test methods
- Developed an aviation heat flux calibration standard
- Initiated substantive improvements in OSU Heat Release Rate Test
- Effort to replace "oil burner" with NexGen Burner and Flame Retention Head in Seat Cushion and Cargo Liner Test Methods
- Support for Industry activity to standardize and improve Means of Compliance (MOC)



## Improvements in Existing FAA Flammability Test Method

- Cabin Materials OSU Heat Release Rate Test
- Seat Cushion Oil Burner Test
- Cargo Liner Oil Burner Test
- Thermal Acoustic Insulation Oil Burner Test
- Thermal Acoustic Insulation Radiant Panel Test
- Evacuation Slides Radiant Heat Test
- Cabin Materials Vertical Bunsen Burner Test



## Developed an Aviation Heat Flux Calibration Standard



- A standard technique for calibrating heat flux transducers
- Transferable to National Institute of Standards and Technology (NIST) primary heat flux transducer
- Consists of reference heat flux transducer, radiant heat source and precision alignment system



## Initiated Improvements in OSU Heat Release Rate Test (HR2)

- Replace exhaust stack
  - Eliminates bypass air
- Improve heat release rate calibration sequence
- Standard calibration
  burner location





## Replacement and Improved Burner in Seat Cushion and Cargo Liner Test





#### Standardize and Simplify Methods of Compliance Across Industry for Material Flammability Tests (OSU and VBb)

#### U.S. Department of Transportation Federal Aviation Administration

#### Policy Statement

Subject: Flammability Testing of Interior Date: Augus Materials

Date: August 16, 2012 Policy No: PS-ANM-25.853-01

Initiated By: ANM-100

#### Summary

This policy statement provides guidance on acceptable methods of compliance with the flammability requirements of Title 14, Code of Federal Regulations (14 CFR) part 25 for commonly constructed parts, construction details, and materials. The methods of compliance discussed in this policy apply to Amendment 25-32 and later for § 25.853(a) and Amendment 25-61 and later for § 25.853(d). In addition, where the same test method is used to meet other compares can be accepted and addition of \$25.855 (b) and \$25.

#### DOT/FAA/TC-12/10

Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division Atlantic City International Airport New Jersey 08405 Flammability Standardization Task Group—Final Reports: Federal Aviation Administration Draft Policy Memo, AMN-115-09-XXX, August 20, 2009

#### September 2012

Final Report

This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161.

This document is also available from the Federal Aviation Administration William J. Hughes Technical Center at actilibrary.tc.faa.gov.

U.S. Department of Transportation

Federal Aviation Administration



# Halon Replacement

- Evaluate potential replacement agents and systems and provide technical guidance for the safe conversion to environmentally friendly fire suppression and extinguishing agents for use on aircraft.
- <u>Drivers</u>:
  - ICAO and European Commission mandates to replace halon
  - Halon contamination





# Halon Replacement

### Major Accomplishments

- Evaluated solid aerosol extinguishing agent in an aircraft engine nacelle
- Evaluated impact of low ambient temperature on effectiveness of candidate engine fire extinguishing agent
- Developed criteria for the safe use of hand-held extinguishers, including the effect of agent stratification
- Supported hand-held extinguisher optimization using a SNAP-listed agent



### **Evaluated Solid Aerosol Extinguishing Agent Against Fires in an Aircraft Engine Nacelle**



#### 747SP Engine Test

#### **Spray Fire Visual Results**



#### Impact of Low Temperature on Volatile Extinguishment Agent in Engine Nacelle Fire Simulator



#### **Engine Nacelle Fire Simulator**

Modified ENFS for Cold-Soaked Tests



### Developed and Issued Criteria for Safe Discharge of Hand-Held Extinguishers in Aircraft





## Determined Impact of Stratification on Safe Discharge of Halon 1211

Flight Deck Test 1: Target: Copilot's Window Heater



**FAA Fire Safety R&D Since the Previous Triennial Conference** December 2 – 5, 2013



## Progress on Hand-Held Extinguisher Optimization



- Employs patented mist generation technology and Novec 1230
- Meets FAA MPS Hidden Fire Test
- Meets 3B pan/Heptane Fire
- Meets 5B pan/JP-8 fire (4 lbs)
- <u>Goal</u>: Develop a hand-held extinguisher that meets 5B pan/Heptane fire with 4 lbs of agent and FAA MPS tests



# **Freighter Fire Safety**

- Determine the adequacy of current fire safety requirements in freighter aircraft and the feasibility and cost/benefit of fire detection and suppression improvements.
- <u>Drivers</u>:
  - Freighter hull losses and serious incidents caused by fire
  - NTSB recommendations related to (1) adequacy of current detection means and (2) need for an onboard fire suppression system



UPS 747-400 Dubai 9/3/2010



# **Freighter Fire Safety**

#### Major Accomplishments

- Developed a risk model of likely freighter fire accidents and their cost over 10 years
- Developed a cost/benefit model framework for freighter fire mitigation strategies over a 10 year period
- Demonstrated the effectiveness of UPS fire resistant cargo container with and without aerosol extinguishing agent
- Supported ISO/SAE development of fire containment cover (FCC) and fire resistant container (FRC) standards by SAE and ISO.
- Determined the relationship between burning rate and atmospheric pressure and oxygen concentration



### Freighter Fire Accident Risk Analysis Model (DOT/FAA/AR-11/18)



Figure 3 Estimation of the Annual Number of Lithium Ion batteries produced worldwide

Figure 6 Predicted Number of Freighter Airplane Cargo Fire Accidents through to 2020



### Freighter Cost/Benefit Model Framework for Fire Mitigation Strategies (DOT/FAA/TC-13/2)







### Effectiveness of Fire Resistant Cargo Container and Aerosol Extinguishing Agent

## **Composite Test Article**



- UPS lightweight fire resistant cargo container suppresses fire by oxygen starvation for 4 hours
- Early discharge of aerosol agent provides additional protection
  - May extinguish fire
  - Reduces likelihood of a flash fire when container is opened
- Rapid
  Applied

extinguishment/suppression can prevent fire spread to hazardous cargo (e.g., lithium batteries)

 UPS introducing fire resistant cargo containers into service trials



### **SAE/ISO Standards Development Participation**



FCC



FRC

- The FAA requested SAE develop new standards for Fire Containment Covers (FCCs) and Fire Resistant Containers (FRCs) for improving fire protection on freighter aircraft.
- ISO is also developing similar standards in a parallel effort.
- The FAA plans to issue or revise a Technical Standard Order (TSO) that will reference these new standards
- The Fire Safety Branch has conducted full scale testing and provided input to SAE/ISO to support these new standards



### Effect of Pressure and Oxygen Concentration on Material Burning Rate

Flame Profiles at a) 1 atm, b) 0.6P atm, c) 0.47 atm, d) 0.18 atm



Steady Burning Mass Flux vs Pressure at Different Heat Fluxes – Experiment and Theory



Combustion & Flame 160 (2013) 1519 - 1530



## **Lithium Battery Fire Hazards**

- Determine the fire hazards of lithium batteries and develop methods to prevent or control
- Applications: bulk transport as cargo; aircraft application, including cabin; passenger carry-on, and passenger luggage
- <u>Drivers</u>:
  - Fatal freighter fire accidents
  - Increasing rate of incidents in aviation
  - Billions of lithium batteries transported annually by air
  - Transport of batteries increasing faster than all other cargo combined





# **Lithium Battery Fire Hazards**

### Major Accomplishments

- Evaluated hazards in freighter main cargo compartment under full-scale fire conditions (B727)
- Demonstrated cockpit smoke obscuration from electronic flight bag (EFB) with batteries in thermal runaway (B737)
- Evaluated effectiveness of a Halon 1301 fire suppression system in Class C cargo compartment under full-scale fire conditions (B727)
- Examined improvements in bulk shipment packaging aimed at preventing propagation of thermal runaway
- Determined the effectiveness of different agents in extinguishing a battery fire and preventing thermal runaway propagation, under small-scale fire conditions



### Lithium Battery (5000 Cells) Fire Hazards in Freighter Main Cargo Compartment (Class E)





#### Lithium Ion Batteries

- Smoke obscuration in flight deck
- Significant compartment damage
- Test terminated before all cells consumed

#### • Lithium Metal Batteries

- Faster fire growth and greater hazards than lithium ion test
- Smoke obscuration in flight deck
- Test terminated in 16 minutes

#### Non-Lithium Batteries

- No smoke in flight deck
- Minimal damage to cargo liners
- Test terminated after more than one hour because of steady conditions



## Cockpit Smoke Caused by EFB Thermal Runaway



- Heavy smoke in cockpit greatest hazard
- CO, CO2, O2 depletion and temperature rise insignificant
- High cockpit ventilation (1 air change per minute) did not prevent smoke obscuration
- Halon extinguished open flames but did not prevent cell-to-cell propagation and smoke/gas emissions



### Lithium Battery (5000 Cells) Fire Suppression in Class C Cargo Compartments



- Lithium Ion Batteries
  - Extinguished open flames
  - Did not prevent thermal runaway propagation
  - No smoke penetration into flight deck or main cargo compartment

#### Lithium Metal Batteries

- Fire continued to escalate despite halon and oxygen depletion
- Heavy smoke in main cargo compartment and adjacent mixed bay
- Test was terminated with water
- Explosion occurred after termination

#### Non-Lithium Batteries

- Fire suppressed
- Smoke confined to cargo compartment
- No damage to aircraft



## Examination of Passive Improvements for Bulk Shipment Packaging

#### Lithium-ion Results (State-of-Charge)





## **Effectiveness of Streaming Agents**

**Extinguishment and Prevention of Thermal Runaway Propagation** 





#### Additional Information: www.fire.tc.faa.gov



FAA Home FAA Site Map DOT Ask FAA FAA Search

Fire Safety Home Information Tech Center

Search

| Fire & Cabin Safety (Materials) Systems) Fire Research (Reports) Handbook (Meetings) Conference |                     |           |         |               |         |          |          |            |  |
|-------------------------------------------------------------------------------------------------|---------------------|-----------|---------|---------------|---------|----------|----------|------------|--|
| ne a cash surely materials systems the tesearch hereits hands ok meterings constructed          | Fire & Cabin Safety | Materials | Systems | Fire Research | Reports | Handbook | Meetings | Conference |  |

| What's Nev | v                         |                                                                      | Announcements                                          |  |  |  |
|------------|---------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Date       | Section                   | Description                                                          | Update: Heat Release Rate Apparatus                    |  |  |  |
| 10/22/13   | Reports                   | Added report DOT/FAA/TC-13/46                                        |                                                        |  |  |  |
| 10/21/13   | Reports                   | Added report DOT/FAA/TC-12/13                                        | SAFO: Risks in Transporting Lithium Batteries in       |  |  |  |
| 10/04/13   | Materials                 | Added September 2013 HR2 Task Group Meeting files.                   | Cargo by Aircraft                                      |  |  |  |
| 08/22/13   | Conference                | Added abstracts and author biographies.                              |                                                        |  |  |  |
| 07/22/13   | Materials                 | Minutes and attendee list posted from June meeting.                  | Final Policy: Policy Statement on Flammability         |  |  |  |
| 07/02/13   | Materials                 | Presentations posted from June meeting.                              | Testing of Interior Materials Issued (link opens small |  |  |  |
| 6/07/13    | Systems                   | Presentations, minutes, and attendee list posted from May meeting.   | window)                                                |  |  |  |
| 5/17/13    | Handbook                  | Updated Appendix F and Chapter 6                                     |                                                        |  |  |  |
| 5/14/13    | Materials                 | June meeting agenda posted.                                          | UPDATED 08/12: Statement on the Use of                 |  |  |  |
| 5/14/13    | Systems                   | Update the May meeting agenda.                                       | Magnesium in Airplane Cabins                           |  |  |  |
| 5/09/13    | Systems: Lavex: Lavex MPS | Updated Lavex Minimum Performance Standard                           |                                                        |  |  |  |
| 4/12/13    | Reports                   | Added Report DOT/FAA/TC-13/2                                         | Released: AC 20-42D - Hand Fire Extinguishers for      |  |  |  |
| 4/05/13    | Reports                   | Added report DOT/FAA/TC-12/53                                        | Use in Aircraft                                        |  |  |  |
| 3/29/13    | Systems                   | May meeting info updated and agenda posted.                          |                                                        |  |  |  |
| 3/19/13    | Materials                 | Presentations, minutes, and attendee list posted from March meeting. | Cabin Safety Research Technical Group: Accident        |  |  |  |
| 2/05/13    | Reports                   | Posted reports DOT/FAA/AR-11/3 and DOT/FAA/TC-12/39                  | Database now available online.                         |  |  |  |
| 1/30/13    | Systems                   | May meeting info posted and registration open.                       |                                                        |  |  |  |
| 1/30/13    | Materials                 | March meeting agenda posted.                                         | InFU: Availability of a Federal Aviation Administratio |  |  |  |
| 1/21/13    | Handbook                  | Updated Appendix F & Appendix G                                      | VIDEOS below)                                          |  |  |  |
| 1/17/13    | Materials                 | June meeting info posted and registration open.                      | *10200 Below)                                          |  |  |  |
| 1/16/13    | Materials                 | March meeting info posted and registration open.                     | SAFO: Fighting Fires Coursed By Lithium Type           |  |  |  |
| 12/13/12   | Front Page                | Posted 2012 FAA Fire Safety Highlights.                              | Batteries in Portable Electronic Devices (see          |  |  |  |
| 11/27/12   | Systems                   | Presentations, minutes, and attendee list posted from Nov. meeting.  | VIDEOS below)                                          |  |  |  |
| 11/06/12   | Systems                   | Updated agenda for Nov. meeting (includes ICAO agenda)               |                                                        |  |  |  |
|            |                           |                                                                      | VIDEOS: View videos on Cabin Crew Fire Fighting        |  |  |  |

#### Additional Links and Information

Final AC on Thermal/Acoustic Insulation Burnthrough. AC 25:856-2A Installation of Thermal/Acoustic Insulation for Burnthrough Protection

Amendment to Fire Penetration Resistance of Thermal/Acoustic Insulation Installed on Transport Category Airplanes

Datasheet for Round Robin for the Heat Release Test (OSU) and Smoke Density Test (NBS)



#### Highlights

ISTI

- 2012 Highlights
- 2011 Highlights
- 2010 Highlights
- 2009 Highlights
- Administration

Training (updated 03/09/09) & Laptop Battery Fires.