COMPOSITE MATERIAL FIRE FIGHTING

Presented to: The Sixth Triennial International Fire & Cabin Safety Research Conference Atlantic City, New Jersey

Presented by: John C. Hode SRA International

Date: October 25-28, 2010

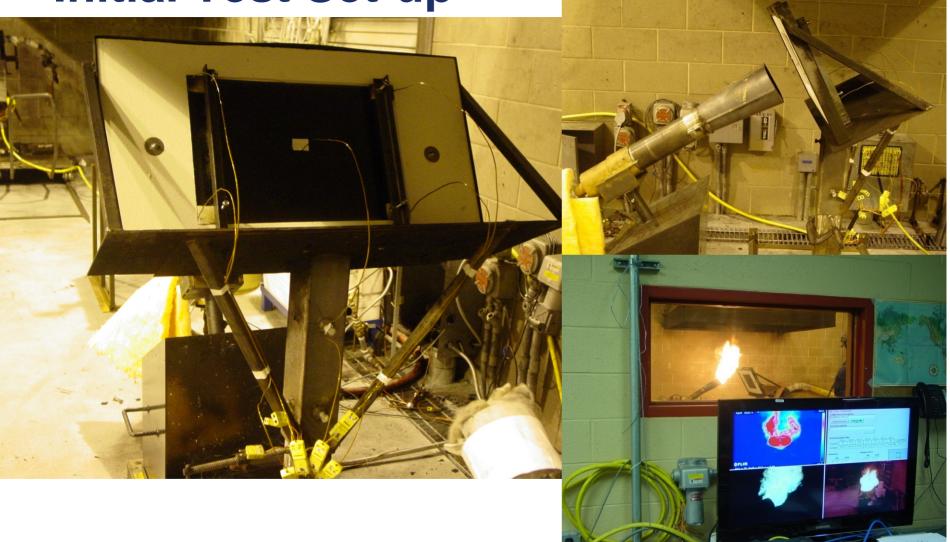
Federal Aviation Administration

Creation of a Test Method

First objective:

- Determine if self-sustained combustion or smoldering will occur.
- Determine the time to naturally cool below 300°F (150°C)

Exposure times of Initial tests:


- 10, 5, 3, 2, & 1 minutes
 - FAR Part 139 requires first due ARFF to arrive in 3 minutes.
 - Actual response times can be longer or shorter.

Second objective:

Determine how much fire agent is needed to extinguish visible fire and cool the material sufficiently to prevent re-ignition.

Initial Test Set-up

Initial Findings

- Post-exposure flaming reduces quickly without heat source
- 2. Off-gassing causes pressurization inside the panel causing swelling
- 3. Internal off-gassing can suddenly and rapidly escape
- 4. Off-gas/smoke can be ignited
- 5. Longer exposures burn away more resin binder

- 6. Smoldering can occur
- 7. Smoldering areas can cause re-ignition
- 8. Smoldering temperatures can be near that of fuel fires
- Fibers can be oxidized by high temperatures and sufficient oxygen
- 10. Insulated areas cooled much more slowly than uninsulated areas

Small & Intermediate Scale Testing

Small-scale and Intermediate-scale testing being conducted by Hughes Associates Inc. (HAI).

Small & Intermediate Scale Testing

- Baseline intermediate scale tests will be conducted to see if results from Phase I are repeatable with Phase II test design.
- Small scale tests
 - ASTM E1354 Cone Calorimeter
 - Data to support exterior fuselage flame propagation/spread modeling
 - ASTM E1321 Lateral Flame Spread Testing (Lateral flame spread)
- Thermal Decomposition Modeling
 - Thermal Decomposition Apparatus (TDA)
 - Thermal Gravimetric Analysis (TGA)
 - Differential Scanning Calorimetry (DSC)
 - Pyrolysis Gas Chromatograph/Mass Spectroscopy (PY-GC/MS)

Small & Intermediate Scale Testing cont

- Intermediate scale tests (agent application to be tested at this scale)
 - Three different heat sources evaluated
 - Propane fired area burner (2 sizes)
 - Propane torch
 - Radiant heater
 - Sample panels are 4 feet wide by 6 feet tall
 - Protection added to test rig to avoid edge effects.
 - A representative backside insulation was used in several tests.

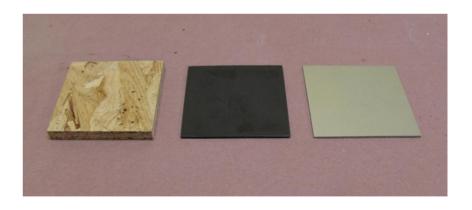
Small & Intermediate Scale Materials

• CFRP

 Unidirectional T-800/350°F cure epoxy, 16 ply quasiisotropic [0,-45,45,90]S2, nominal thickness of 3.2 mm (0.126 inch) Finished 60/40 fiber-resin

• OSB

- Georgia Pacific Blue Ribbon®, nominal thickness of 14.7 mm (0.578 inches)
- Flame spread rating of 150-200



Composite Skin Fire Characteristics and Suppression

Approach

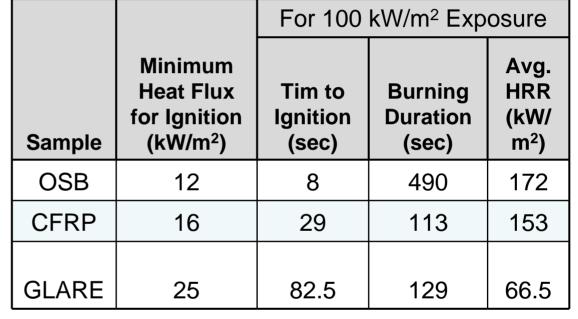
- Small scale materials testing
- Results feed into fire model of combustion and propagation
- Intermediate scale tests
 - Reduce reliance on large tests
- Materials
 - Composite (CFRP -B787)
 - Aluminum/plastic (GLARE A380)
 - Surrogate (wood board)

ASTM E1321 Lateral Ignition & Flame Spread

- Wood was the only material in which lateral flame spread was observed
- CFRP and GLARE some burning at seams

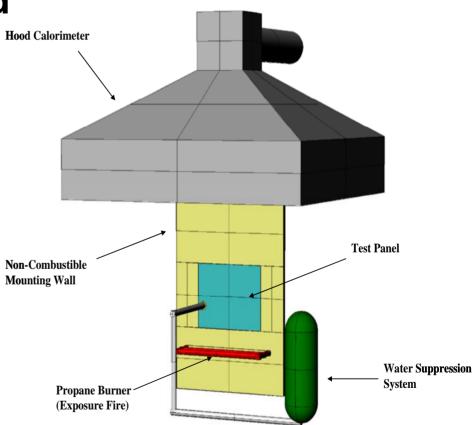
OSB

CFRP


GLARE

Small Scale Tests - Combustibility

- Composite Skin Materials Have Similar or Lower Combustible Properties compared to "Ordinary" Combustibles
- Compared to wood, composites:
 - Require more imposed energy to ignite
 - Ignite slower
 - Have a shorter duration of burning(due to smaller thickness)



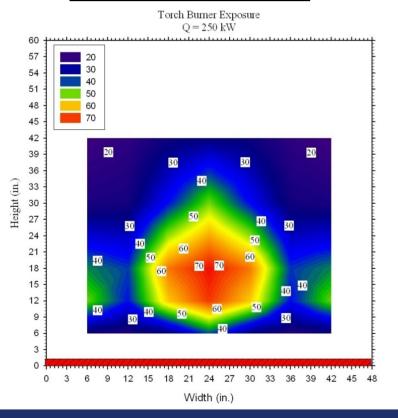
Intermediate Test Series

12 total tests conducted

- 9 with OSB
 - 1 uninsulated
 - 8 insulated
- 3 with CFRP
 - 1 uninsulated
 - 2 insulated

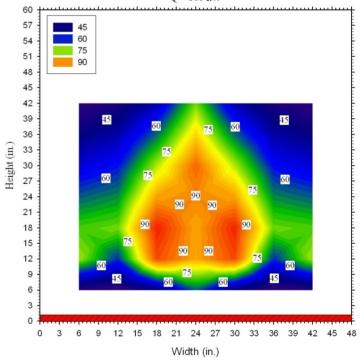
Intermediate-Scale Propane Area Burners

Low Heat Flux Uniform Exposure $q''_e = 35 - 70 \text{ kW/m}^2$

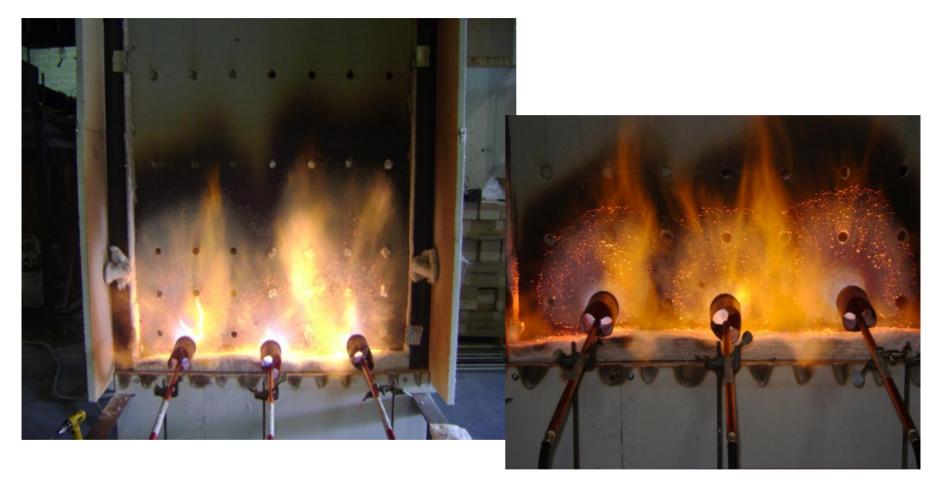


High Heat Flux Uniform Exposure $q''_e = 70 - 100 \text{ kW/m}^2$

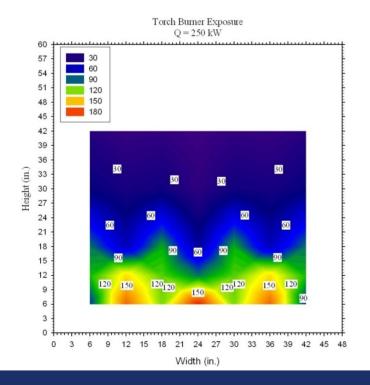
Small Area Exposure



Large Area Exposure



Intermediate-Scale Propane Torches



High Heat Flux Localized Exposure $q''_e = 120 - 200 \text{ kW/m}^2$

Torch (180kW/m²) Exposure

Radiant Panel (100kW/m²) Exposure

OSB Exposed to Large Area Burner with Insulation Backing

Large Area Burner On

Burner Off – 0 seconds

Burner Off – 30 seconds

Burner Off – 60 seconds

Burner Off – 100 seconds

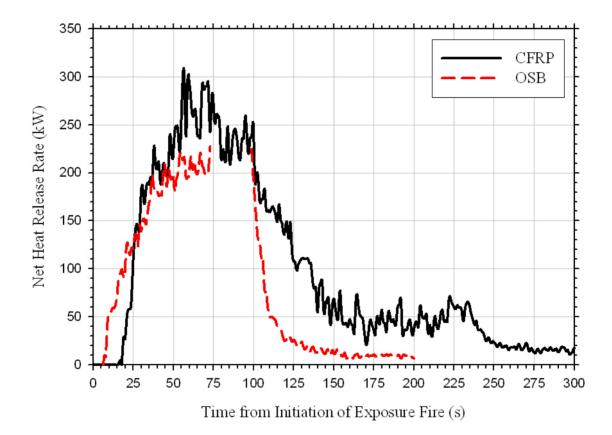
CFRP Exposed to Torch Burner with Insulation Backing

Torch Ignition

2.5 minutes after ignition

1 minute after ignition

4 minutes after ignition Torches Out


1.5 minutes after ignition

15 seconds after torches out

Comparison of CFRP & OSB Heat Release

Intermediate Scale Findings

•Vertical/Lateral flame spread only occurred during exposure

•Post-exposure flaming reduced quickly without heat source

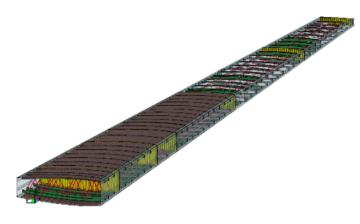
•Ignition occurred quickly into exposure

•Generally, time to ignition & HRR are consistent with cone calorimeter data

CFRP Torch Test

- Exposure 180 kW/m2
- Duration 250 seconds (4 min 10 sec)
- Panel Ignition at 16 seconds
- HRR increased after ignition to peak of 300 kW over 60 seconds
- HRR decayed after 90 seconds to steadystate value of 50 kW
- Post-exposure burning for 37 seconds

Intermediate Scale Test Conclusions


- OSB vs. CFRP
 - Both materials burn and spread flame when exposed to large fire
 - Heat release rates and ignition times similar
 - The thicker OSB contributed to longer burning

Large Scale Implications

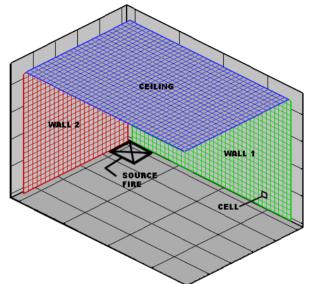
- OSB can be used as a surrogate for CFRP
- Flaming and combustion does not appear to continue after exposure is removed
 - Since there was no or very little post exposure combustion, no suppression tests performed as planned
 - Minimal agent for suppression of intact aircraft?

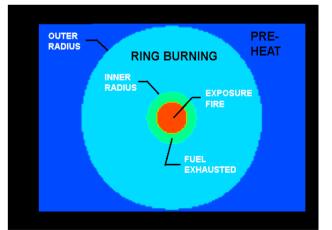
Qualifiers to Intermediate Scale Results

EXAMPLE COMPLEX GEOMETRY FIRE TEST SETUP FOR CFRP FLAMMABILITY EVALUATION.

Need to check GLARE

- No significant surface burning differences anticipated (may be better than CFRP)
- Verify /check CFRP for thicker areas (longer potential burning duration)
- Evaluate edges/separations
 - Wing control surfaces
 - Engine nacelle
 - Stiffeners
 - Post -crash debris scenario

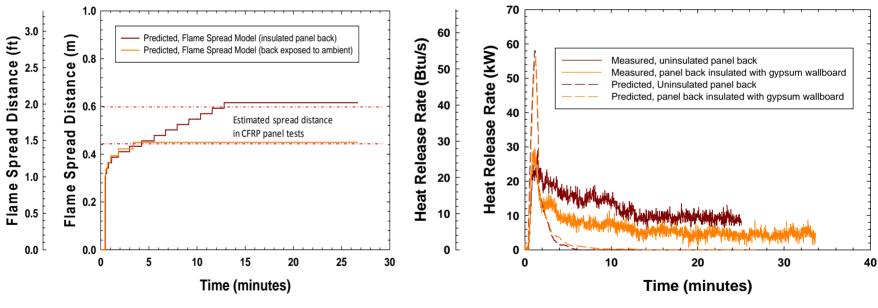

Can a well established fire develop in a post-crash environment?



Flame Spread Modeling Analysis

Analytical tool developed

- Calculates flame spread on vertical and horizontal surfaces
- Multiple exposures
 - External flux/flame radiation
 - Hot gas layer
- Predicts heat release rate and flame spread
- Input data developed from small scale tests

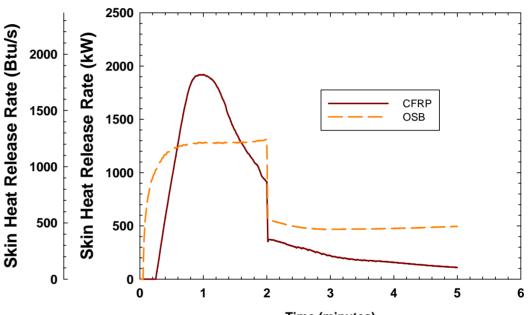


Model Validation

- Intermediate scale tests with ORP and CFRP
 - Radiant panel/line burner/torch exposures
- Wood tests (literature) with accelerating and decelerating flame spread conditions

Flame spread distance (CFRP radiant panel test)

Heat release rate (CFRP radiant panel test)


Modeling Analysis of Aircraft Skin

- Twenty configurations evaluated (parameter variation)
 - Skin panel dimensions, exposure fires, exposure durations, exposure fire suppression rate
- Hydrocarbon pool fire exposures (JP-5) skin immersed, peak fluxes 135 – 180 kW/m²
- Vertical panel (no curvature)
- Flame spread not predicted beyond area initially ignited by pool
 - Some vertical flame propagation after exposure fire suppressed
 - No significant lateral flame propagation after exposure fire suppressed
 - Heat release rate decreases rapidly after suppression
 - Results not significantly affected by scenario parameters

Flame Spread Model – Typical Result

- Heat Release Rate 10 MW exposure fire/ 20 ft tall panel
- 2 minute exposure, rapid suppression
- Lateral propagation stops when fire suppressed
- Fire does not propagate to top of panels
- OSB and CFRP similar propagation behavior
- OSB has higher heat release rate after suppression
- OSB ignites faster and has a faster initial spread

Time (minutes)

Preliminary Modeling Conclusions

- Fire propagation is not predicted for large scale fires exposing vertical CFRP and OSB panels
- OSB and CFRP have similar flame propagation and peak heat release rates, but OSB has higher heat release rate after pool fire suppression and allows faster initial spread
- Modeling did not consider three-dimensional configurations (wing-fuselage connection)
- Fuselage treated as vertical flat surface future flame spread model revisions could account for curvature
- Thermal penetration after ignition yet to be performed decomposition model plus intermediate validation data will be used for this

Overall Findings

- Flame propagation and self-sustained flaming does not significantly occur in the absence of external fire source.
- Epoxy off-gas is combustible.
- CFRP can smolder.
- Epoxy off-gas causes composite to swell through internal pressurization.
- OSB is potential surrogate for large scale tests to assess extinguishment test methods to save composites for data collection.

Participation welcome

- Soliciting comments and ideas on:
 - Potential test configurations
 - Relevant previous testing results and data
 - Sources for aviation-type carbon fiber composites and FML
 - Other helpful ideas

