

Effect of Cabin Pressure on the Piloted Ignition of Combustible Solids

Sonia Fereres ¹, Chris Lautenberger¹, Carlos Fernandez-Pello ¹, David Urban ², Gary Ruff ²

¹University of California at Berkeley Dept. of Mechanical Engineering Berkeley, CA

²NASA Glenn Research Center Cleveland, OH

> 6th Triennial International Aircraft Fire and Cabin Safety Research Conference, October 28, 2010, Atlantic City, New Jersey

Motivation

- Fires in pressurized vehicles (aircraft, spacecraft or submarines) are extremely hazardous
 - Small compartments
 - Difficulty to escape
- Emphasis on fire **prevention**:
 - Material flammability
 - Effect of environmental conditions (oxygen concentration, pressure, radiant heat flux, etc) on ignition

Today's Talk

- Understand the physical mechanisms responsible for ignition of solid combustibles under low pressure
- Aircraft cabin pressure is typically pressurized to a "cabin altitude" of 8000 feet or less (~ 75 kPa)
- Are reduced pressure environments a higher fire risk?
 - Piloted ignition experiments at low P
 - *Forced Ignition and Spread Test* (FIST) apparatus at UC Berkeley to analyze material flammability
 - Analytical explanation of results

Lower ambient pressure can be found at...

• High Altitude

• Inside Aircraft

Inside Spacecraft

Cabin Environments

How does a solid fuel ignite?

Piloted ignition process:

- 1. Solid heating & pyrolysis
- 2. Mixing of gaseous fuel and air
- 3. Chemistry: fuel/air mixture reaches lean flammability limit at high temperature igniter
- 4. If sufficient pyrolysis gases are generated: a diffusion flame will anchor on solid (burning) → critical mass flux at ignition

Possible Fire Scenario

Heat source: electronic component overheating
Fuel: polymeric materials used in panels, blocks, covers
Ignition source: spark from electrical arching

Forced Ignition and Spread Test (FIST)

<u>Variables</u>: -air flow velocity -incident heat flux -ambient pressure

Material: PMMA

Measure :

- $T_{surface}$ vs. time \rightarrow t_{ig} , time to ignite

-Mass vs. time \rightarrow (dm/dt)|_{tig} mass loss rate at ignition

FIST Apparatus

Video of Test

Experiment Example

• 100 kPa (Raw Data)

Experimental Results

• Pressure Comparison : 55, 83 & 100 kPa (Raw Data)

Experimental Results

• Ignition Delay & Mass Loss Rate at Ignition vs. Pressure

Visual Observations

• Different surface behavior: bubble formation, size and bursting characteristics

3 psi (21 kPa)

12 psi (83 kPa)

Flame establishment over solid surface also different

3 psi (21 kPa)

Effect of Pressure (1)

- Ignition delay time, t_{ig}:
 t_{ig}= t_{heating} + t_{mixing/transport} +t_{induction}
- Heating time: convective heat loss over flat plate

 $h \propto \mathrm{Re}^{1/2} \mathrm{Pr}^{1/3}$

- Forced flow:
- Natural convection: $h \propto Gr^{\frac{1}{4}} \operatorname{Pr}^{\frac{1}{4}}$

$$h \propto \text{Re}^{\frac{1}{2}} \text{Pr}^{\frac{1}{3}} \sqrt[4]{1 + \frac{Gr}{\text{Re}^2}} \text{Pr}^{\frac{1}{3}}$$

Mixed flow

 $Re = \rho UL/\mu, Re \sim P$ $Pr \neq f(P)$ Ideal gas: Gr ~ P²

As pressure decreases, convective heat loss of material to surroundings is lower \rightarrow heats more rapidly

Effect of Pressure (2)

- Mixing/transport time: Mass loss rate at which a flammable concentration (LFL) is obtained at the pilot <u>Simplified Analysis : Boundary Layer Integral Method</u>
 - 3rd order polynomials for velocity, temperature and species profiles: $\frac{u}{U_{\infty}} = \frac{3y}{2\delta} - \frac{1}{2} \left(\frac{y}{\delta}\right)^3 \qquad \frac{T - T_0}{T_{\infty} - T_0} = \frac{3}{2} \frac{y}{\delta_T} - \frac{1}{2} \left(\frac{y}{\delta_T}\right)^3 \qquad \frac{Y_F - Y_{FO}}{Y_{F\infty} - Y_{F0}} = \frac{3}{2} \frac{y}{\delta_c} - \frac{1}{2} \left(\frac{y}{\delta_c}\right)^3$
 - Integrate BL Eqns.→ analytical expressions for hydrodynamic, thermal and concentration BL thicknesses:

$$\begin{split} \delta &= \sqrt{\frac{280}{13} \frac{vx}{U_{\infty}}} \approx 4.64 \sqrt{\frac{vx}{U_{\infty}}} \\ \delta_T &= \left[\frac{10\alpha x \delta}{U_{\infty}} \left(1 - \frac{x_T}{x}\right)\right]^{1/3} \\ \delta_c &= \delta \left\{\frac{13D}{14v} \left[1 - \left(\frac{x_c}{x}\right)^{3/4}\right]\right\}^{1/3} \end{split}$$

δΛ

↑δc.

A COLORED TO A COL

Simplified Analysis Heat Transfer Coefficient

- $h \approx k/\delta_T$
- At the sample location, h decreases by 13% when the pressure is reduced from 100 kPa to 75 kPa

Simplified Analysis Species Concentration

0.014 28 kPa 0.012 -41 kPa **Vertical distance (m)** 800.0 800.0 900.0 400.0 400.0 55 kPa 69 kPa 83 kPa •100 kPa 0.002 0.000 0.0 0.2 0.4 0.6 0.8 1.0 Fuel Mass Fraction Profile Y_F/Y_{F0}

δ1

 $\delta \mathbf{c}$

x

 Reduced pressure leads to a thicker species boundary layer

$$\frac{Y_F}{Y_{F0}} = 1 - \frac{3}{2} \frac{y}{\delta_c} + \frac{1}{2} \left(\frac{y}{\delta_c}\right)^3$$

Simplified Analysis

• To determine mass loss rate:

 $\dot{m}^{\prime\prime} \approx -\rho D \left(\frac{\partial Y_F}{\partial y} \right)_y = \frac{3}{2\delta_c} \rho D Y_{F0} \left(1 - \left(\frac{y}{\delta_c} \right)^2 \right)$

 At lower P, required mass flow rate of fuel to reach lean flammability limit at igniter location is reduced

Comparison of Trends

• Mass Loss Rate at Ignition vs. Pressure

20

Current Work Fire Dynamics Simulator (FDS) 2D model

PMMA is irradiated under a prescribed heat flux → the solid decomposes and the products of the pyrolysis ignite in the gas phase.

Premixed flame appears in the gas phase

Flame 'jumps' on to solid fuel surface

Diffusion flame anchored on solid surface travels

HRR

Temperature

Current Work

- Fire Dynamics Simulator (FDS) 2D model
 - Heat release rate/volume:

Summary & Conclusions

• Experimental results from piloted ignition show that $t_{ig} \& m_{ig}$ decrease with pressure:

• At 75 kPa , $\Delta tig = -15\%$ $\Delta m_{ig}^{"} = -7\%$

- A theoretical explanation provides insight on the effect of pressure on:
 - Heat transfer coefficient
 - Mass loss rate required to reach a flammable mixture
- Next steps include developing a numerical model using FDS to compare to experiments
- Overall, a reduction in ambient pressure leads to an increased fire risk

TROP CALLS

Acknowledgements

• The research at University of California at Berkeley was supported by NASA on grant NNX08BA77A