

Examining the means to protect against fuselage burnthrough

S. F. Jagger¹, J. R. Hoyes¹, P. T. Ireland², H. S. Ledin¹ and A. Mullender²

1. Health & Safety Laboratory, 2. Rolls-Royce Plc

Outline

- Introduction
- Methods for protection
- Assessment of protection methods
- Experimental
 - ISO 2685 and UL94 tests
 - Example results
- Modelling approach
 - Modelling of burner
 - Modelling of material response
- Summary

Methods for Protection – 1

Protective shields

Stainless steel panels Dimpled steel (4/1000") or plain (0.6 mm)

Surface coatings

Ceramics Fastblock

Hardening of materials

- Addition of retardants
 - Polyphosphate
 - Nano clays
 - Carbon nano tubes

Higher performance composites – HEXCEL (not yet tested)

Assessment of performance

- Carried out experimentally:
 - Enhanced ISO 2685 test
 - UL94 test
- Modelling approach:
 - Ultimately would like to model response of panels
 - Use testing to provide data to develop models

ISO 2685 Test

- Tests carried out according to ISO 2685 protocol
- Use propane burner as fire source
- Facility to apply +ve and –ve pressure to back face
- Facility to vibrate sample

Enhance with IR Imager for rear face temperature measurement

ISO 2685 Pre-Test Calibration

Measurements of temperature with an array of nine thermocouples

Measurements of heat flux using a continuous water flow calorimeter

ISO2685 Burner

Burner exit plane, 373 large holes – fuel and primary air, and 340 small holes – secondary air

Fuselage burnthrough test in progress

- Flammability testing
- Vertical testing with bunsen burner
 - Flame applied for 10 s and then removed
 - Flame is reapplied for another 10 s once the flaming has stopped
- Persistence & length of burn measured

Protective shields

Shield survives but deforms Panel off-gases & collapses Volatiles burn-off at edge of panel

Shielded composite

Surface coatings - 1

No improvement to performance Resin burns off with loss of structural strength

Surface coatings - 2

FASTBLOCK 300

Ceramic loaded silicon-based proprietary fire protection coating

2 mm AL panel survives test with 4 mm coating

Rear temperatures little above ambient Problems with adhesion to composite Useful for repairs

Results: AL plate thickness & ventilation

Composite hardening

- Composite hardened panels show good performance in lab-based UL 94 tests
- No improvement over unhardened materials in large-scale fire tests
- Toxicity problems with carbon nano-tube hardeners
- Hexcel composite shows promise but not yet tested

CFD Modelling – 1

- ANSYS CFX-12
 - General purpose commercial CFD code
 - Compressible flow solver
 - Physics
 - Turbulence
 - Combustion
 - Chemical reactions
 - Radiation
 - Multi-phase flows
 - Multi-physics

CFD Modelling – 2

- Hybrid mesh
 - Prismatic cells in nearwall region
 - Tetrahedral cells elsewhere
- Menter's SST turbulence model
 - K-ω model in the nearwall region
 - K- ε model elsewhere
- Combustion
 - Eddy BreakUp model

- Radiation
 - P1 model
 - Discrete Transfer model
 - Monte Carlo model
- Sensitivity analysis effects on the solution to
 - Mesh resolution
 - Choice of
 - Turbulence model
 - Radiation model (not shown here)
- All simulations were performed as steady state calculations

Mesh Sensitivity

Turbulence model

Menter's SST model

k-ε model

Temperature (IR)

20.0°C

unity

Summary – Experimental

- Material protection
 - Hardened composites provide little advantage
 - Thin ceramic coatings provide no benefit
 - Thick Fastblock coatings provide good protection and insulation
 - Thin stainless steel sheets prevent flame penetration but transfer heat sufficient to volatilise composite resins

Testing

- Testing must be carried out under pressure to fully examine composite performance
- Lab scale fire testing does not give true idea of composite performance

Summary – Modelling

- CFD modelling is feasible, but further work is required
- Outstanding tasks
 - Validation no comparison between experiments and modelling yet
 - No conjugate heat transfer in the test panel
 - Material degradation is modelled with 1D model not reported here

Acknowledgements

- Work funded by a combination of
 - EU FP6 Programme
 - Health & Safety Executive
 - Rolls-Royce
 - Other UK Government Departments