Development of a New Flammability Test for Aircraft Ducting & Wiring

Presented to: The International Aircraft Materials Fire Testing Working Group

> By: John Reinhardt, presented by Pat Cahill Date: March 3-4, 2010



Federal Aviation Administration

#### BACKGROUND

• The FAA initiated efforts to improve the fireworthiness of hidden areas in the aircraft (T/A Insulation) in 1995 after several incidents involving the thermal-acoustic insulation.

• The FAA's goal was to raise the level of safety for the airplane such that fires in inaccessible areas would not spread and create catastrophic conditions.

•Systems of interest in the hidden area includes thermalacoustic insulation, <u>aircraft ducting</u>, wiring, etc.

• Aircraft ducting is currently certified using "12-second Vertical Bunsen Burner test (12VBB, Title 14 Code of Federal Regulations Part 25, Appendix F Part I (a)(ii))



SwissAir MD-11 Accident Investigation Reconstruction, 1998



#### BACKGROUND

• The current test for aircraft ducts does not predict the behavior of the part in actual conditions and therefore suggests the need for a new standard.

• In 2004, in conjunction with the IAMFTWG, the FAA chartered a project to develop a new fire test procedure to evaluate the fire-worthiness of aircraft ducting.

• In 2004, as part of the project baseline, several aircraft ducting materials were re-tested with the 12VBB test. <u>They all passed the test</u>.





#### OBJECTIVE

Develop an improved fire test method for aircraft ducting that could adequately discriminate between poorly performing ducting materials and fire worthy ones when exposed to a realistic fire scenario.

#### METHODOLOGY

Conduct realistic, intermediate-scale tests on various shapes and sizes of ducting using a flaming foam block as the fire source. The results would be used as the basis for the development of a laboratory-scale test.







#### **Intermediate-Scale Test**

#### **Radiant Heat Panel Test**

(Small-Scale Test)



## **Equipment Selection**





**Development of a New Flammability Test for Aircraft Ducting & Wiring** The Sixth Triennial International Fire & Cabin Safety Research Conference



Federal Aviation Administration



#### **COMPARISON OF EQUIPMENT:**



Vertical Bunsen Burner Test Apparatus (FAR 25.853 or Handbook) Radiant Heat Panel Test Apparatus (FAR 25.856)



## **Radiant Heat Panel Test Protocol**

#### FIRE THREAT:



• Methane Pilot Flame (Inner cone = 7/8" & tip of flame = 1.5 in)



- 1 BTU/ft<sup>2-</sup>sec Radiant Heat (1 min Exposure)
- Propane Pilot Flame (blue inner cone =  $\frac{3}{4}$ ", overall flame length = 5" long)



## **Radiant Heat Panel Test Protocol**

#### **TEST PROCEDURE:**



**Vertical Bunsen Burner Test** 

- Impinge the pilot burner flame on the sample for 12 seconds
- Maintain sample in chamber until flames are self-extinguished or after flame time > 15 seconds
- Record after flame time, burn length, and drip flame time



- Expose sample to 1 BTU/ft2 radiant heat for 1 minute
- After the 1 minute exposure, impinge the pilot burner flame on the sample for 15 seconds
- Maintain sample in chamber until flames are self-extinguished or after flame time > 45 seconds
- Record after flame time and burn length





## **ACCEPTANCE CRITERIA**

**Vertical Bunsen Burner Test** 

- Burn Length < 8"
- Flame Time < 15 sec
- Drip Flame Time < 3 sec



**Radiant Heat Panel Test** 

• Burn Length < 2"

• After Flame Time < 45 sec

• Fire Blocking Jacket, tapes or hook and loop shall not shrink away



# **Round Robin Testing**

## **Round Robin Participants:**

✓ Participants included 6 working group members.

 ✓ Participating laboratories included aircraft manufacturers, national and international government labs, testing equipment manufacturers, material manufacturers, and other aviation component suppliers.

 ✓ Participants wanted to remain anonymous





## **Tested Samples**





**Development of a New Flammability Test for Aircraft Ducting & Wiring** The Sixth Triennial International Fire & Cabin Safety Research Conference

Sample J



Sample K

Federal Aviation Administration



## **Round Robin Average Results**

|           | Average of All Labs |                  |                                            |                   |                    |                   |             |                 |                       |
|-----------|---------------------|------------------|--------------------------------------------|-------------------|--------------------|-------------------|-------------|-----------------|-----------------------|
| Sample ID | Burn<br>Length (cm) | *Std Dev<br>(cm) | After Flame<br>Extinguishing<br>Time (sec) | *Std Dev<br>(sec) | Glow Time<br>(sec) | *Std Dev<br>(sec) | % Mass Loss | *Std Dev<br>(%) | Pass/Fail<br>Criteria |
| Α         | 3                   | 0.65             | 0.6                                        | 0.58              | 0.6                | 0.66              | 1.2         | 0.72            | Passed                |
| В         | 2.9                 | 0.45             | 7.3                                        | 4.63              | 0.4                | 1.06              | 2.1         | 0.44            | Passed                |
| С         | 2.4                 | 0.38             | 0.4                                        | 0.96              | 1.7                | 2.14              | 2.8         | 1.22            | Passed                |
| D         | 2.7                 | 0.61             | 1.4                                        | 1.38              | 3.8                | 5.54              | 1.6         | 0.36            | Passed                |
| E         | 3.5                 | 1.24             | 3.4                                        | 1.19              | 1                  | 2.04              | 4.1         | 1.11            | Passed                |
| F         | 4.1                 | 1.02             | 0.5                                        | 0.77              | 1.1                | 1.31              | 1.7         | 0.38            | Passed                |
| G         | 2.9                 | 0.79             | 34.5                                       | 8.62              | 6.8                | 16.7              | 1.5         | 1.32            | Passed                |
| Н         | 2.9                 | 0.46             | 12.5                                       | 3.91              | 1.9                | 4.74              | 0.7         | 0.6             | Passed                |
|           | +9.6                | N/A              | +120                                       | N/A               | N/A                | N/A               | +14.8       | N/A             | Failed                |
| J         | +5.7                | N/A              | +120                                       | N/A               | N/A                | N/A               | +11         | N/A             | Failed                |
| K         | 2.7                 | 0.55             | 0.2                                        | 0.44              | 0                  | 0                 | 1.2         | 1.17            | Passed                |

Acceptance Criteria: Burn Length =< 5.08 cm and After Flame Extinguishing Time =< 45 seconds \*Note: This is the standard deviation of the average values reported by the laboratories.



# **Final Comments**

## **Conclusion:**

- Lab #4 did not respond to re-testing request or to obtain courtesy equipment examination.
- There is a possibility that the difference in results of Lab #4 could be attributed to sample placement inside RHP.
- Reproducibility std dev (between labs) was greater than the repeatability std dev:
  (1) AFET 1:1.5, (2) BL 1:3.1
- The deviation between labs was greater than the deviation within a lab.





## **Final Comments**

## **Conclusion (Cont.)**:

• Without Lab# 4 re-testing, the precision information indicates that:

 ✓ There is a 95% confidence level that all labs will obtain the same results for 9, out of 11, materials.

 ✓ For marginal materials (2), there is a 68% chance or less that all labs will have the same results because of the larger standard deviations.





# **Initiating Process**

#### • <u>Objective</u>:

Develop a fire test method for aircraft electrical wiring that can adequately discriminate between poorly performing wire insulation materials and fire worthy ones when exposed to a realistic fire scenario.

#### <u>Methodology</u>:

Conduct intermediate-scale, realistic tests using various types of wiring to serve as basis for test parameters.





#### Intermediate-Scale Fire Test Setup – Front View





Narrow-body Transport Aircraft Fuselage Section

**Development of a New Flammability Test for Aircraft Ducting & Wiring** The Sixth Triennial International Fire & Cabin Safety Research Conference



Federal Aviation Administration

17 of 24









#### INTERMEDIATE-SCALE FIRE TEST OF WIRES/CABLES







## **Description of Selected Test Method**



Patent Pending





## **Select/Modify Selected Test Method**

| PROCEDURE<br>NO. | RADIANT PANEL<br>HEAT FLUX<br>(Watts/cm2) | DISTANCE TO<br>PANEL (cm) | WIRE<br>LENGTH (cm) | WIRE GAGE<br>SIZE (AWG) | WIRE ANGLE<br>(Degrees) | RADIANT<br>EXPOSURE<br>TIME (min) | PILOT<br>IMPINGEMENT<br>TIME (sec) | RESULT                       |
|------------------|-------------------------------------------|---------------------------|---------------------|-------------------------|-------------------------|-----------------------------------|------------------------------------|------------------------------|
| 1                | 1.7                                       | 15.24                     | 76.2                | 20 or cable             | 30                      | 1                                 | 30                                 | Wire broke                   |
| 2                | 1.7                                       | 15.24                     | 76.2                | 20 or cable             | 30                      | 1                                 | 15                                 | No correlation to ISF test   |
| 3                | 1.7                                       | 7.62                      | 76.2                | 20 or cable             | 30                      | 1                                 | 15                                 | Excellent correlation to ISF |
| 4                | 1.7                                       | N/A                       | 76.2                | 20 or cable             | 0                       | 1                                 | 15                                 | No correlation to ISF test   |
| 5                | 1.7                                       | 7.62                      | 31.75               | 20 or cable             | 30                      | 1                                 | 15                                 | Excellent correlation to ISF |
| 6                | 1.7                                       | 7.62                      | 76.2                | 24                      | 30                      | 1                                 | 15                                 | Wire broke                   |
| 7                | 1.7                                       | 7.62                      | 76.2                | 24, 10 or cable         | 30                      | 1                                 | 3                                  | Excellent correlation to ISF |
| 8                | 1.7                                       | 7.62                      | 76.2                | 20 or cable             | 30                      | 0                                 | 3                                  | No correlation to ISF test   |

**Selection**: Procedure number 7 provided an excellent correlation with the intermediate-scale fire test without breaking the small (24) gage wires.





### **ELECTRICAL WIRES/CABLES FIRE TEST RESULTS**

|          |                         | TEST                  |                                            |                                 |                                      |  |  |
|----------|-------------------------|-----------------------|--------------------------------------------|---------------------------------|--------------------------------------|--|--|
| Item No. | Wire ID                 | Temperature<br>Rating | FAA 60 Degree<br>Flammability<br>Wire Test | Intermediate-Scale<br>Fire Test | 30 Degree Radiant<br>Heat Panel Test |  |  |
| 1        | CAT3 Cable              | 60                    | Passed                                     | Failed                          | Failed                               |  |  |
| 2        | CAT5e Cable             | 60                    | Passed                                     | Failed                          | Failed                               |  |  |
| 3        | Computer Cable          | 60                    | Passed                                     | Failed                          | Failed                               |  |  |
| 4        | M17/28-RG58             | 80                    | Passed                                     | Failed                          | Failed                               |  |  |
| 5        | Neoprene                | 90                    | Passed                                     | Failed                          | Failed                               |  |  |
| 6        | Fiber Optic Riser Cable | 105                   | Passed                                     | Failed                          | Failed                               |  |  |
| 7        | Hypalon                 | 105                   | Passed                                     | Failed                          | Failed                               |  |  |
| 8        | MS5086/1                | 105                   | Failed                                     | Failed                          | Failed                               |  |  |
| 9        | MS22759/14              | 135                   | Passed                                     | Passed                          | Passed                               |  |  |
| 10       | BMS13-48                | 150                   | Passed                                     | Passed                          | Passed                               |  |  |
| 11       | BMS13-60                | 150                   | Passed                                     | Passed                          | Passed                               |  |  |
| 12       | MS22759/16              | 150                   | Passed                                     | Passed                          | Passed                               |  |  |
| 13       | MS22759/32              | 150                   | Passed                                     | Passed                          | Passed                               |  |  |
| 14       | MS81044/6               | 150                   | Passed                                     | Passed                          | Passed                               |  |  |
| 15       | MS81381/21              | 150                   | Passed                                     | Passed                          | Passed                               |  |  |
| 16       | BMS13-55                | 200                   | Passed                                     | Passed                          | Passed                               |  |  |
| 17       | BMS13-72                | 200                   | Passed                                     | Passed                          | Passed                               |  |  |
| 18       | MS22759/11              | 200                   | Passed                                     | Passed                          | Passed                               |  |  |
| 19       | MS22759/33              | 200                   | Passed                                     | Passed                          | Passed                               |  |  |
| 20       | MS22759/5               | 200                   | Passed                                     | Passed                          | Passed                               |  |  |
| 21       | Silicone 200            | 200                   | Failed                                     | Failed                          | Failed                               |  |  |
| 22       | MS22759/86              | 260                   | Passed                                     | Passed                          | Passed                               |  |  |

Wire temp rating also based on conductor material and coatings: annealed/high strength copper with tin/silver/nickel coatings





#### INTERMEDIATE-SCALE FIRE TEST OF WIRES/CABLES (ISF Data versus RHP 30 Degree Test Data: 7.62 cm Distance, 1 min Exposure, 3 sec Pilot)





# -----

#### **30-Degree Radiant Heat Panel Test Setup**

 To be recommended as replacement test to Chapter 4 in the Aircraft Materials Fire Test Handbook and 14 CFR Part 25 Appendix F, part I (1v) and (3)

 Sample Size: 15 inch long x 0.5 inch diameter wire bundle mounted at 30 degrees from horizon.

Heat Sources: Radiant Heat: 1.5Btu/ft<sup>2</sup>sec, Pilot
 Flame: Propane (T>2000 F), perpendicular to wire sample

Heat Source Exposure: Radiant Heat: 1 minute,
 Pilot Flame: 3 seconds

- Acceptance Criteria:
  - Flame Extinguishing Time: <30 seconds
  - Burn Length: <3 inches
  - Drip Extinguishing Time: <3 sec







#### 30 DEGREE RADIANT HEAT PANEL TEST FOR ELECTRICAL WIRES & CABLES

(Heat Flux: 1.7 W/cm2, Wires at 7.62 cm from the Panel, 1-minute Exposure, 3-seconds Pilot)



**Development of a New Flammability Test for Aircraft Ducting & Wiring** The Sixth Triennial International Fire & Cabin Safety Research Conference



Federal Aviation Administration



## **Alligator Clip Technique to Hold Short Wire**



A 12.5 inch short wire was tested in the 30 degrees test configuration to determine if there is a change in the performance of the insulation flammability in this configuration. There was no change in the flammability performance.



#### Verify Test Method (Cont.)

• Verified procedure with various wire gage sizes: 24 AWG, 20 AWG, and 10 AWG. Also tested jacketed cables.

• Will conduct Round-Robin exercise with other labs to verify procedures.



← Back



## **Additional Work**

#### Recommendation

- The National Fire Protection Association and ASTM International concluded and recommended, in their previous research studies, that the flammability of wires should be determined by bundling the wires, instead of testing a single wire. They indicated that different thermodynamics exist when they burn as a group because of the radiation that emanates from each of the wires in the bundle (heat energy to and from the wires).

-In this past quarter, the FAA Technical Center decided to test the wires using bundles to study it and decide which specimen configuration to use.











## **30-Degree RHP Test Results**





| Item No. | Material ID             | Number of<br>Wires/Cables in<br>Bundle | Flame<br>Extinguishing<br>Time, FET<br>(sec) | Burn<br>Length, BL<br>(cm) | Conductors<br>Exposed? | Pass/Fail<br>Criteria | Matched<br>ISF Test? | Comments                      |
|----------|-------------------------|----------------------------------------|----------------------------------------------|----------------------------|------------------------|-----------------------|----------------------|-------------------------------|
| 1        | MS22759/11              | 25                                     | 0                                            | 1.5                        | Yes                    | Passed                | Yes                  |                               |
| 2        | MS81381/21              | 25                                     | 0                                            | 2.0                        | No                     | Passed                | Yes                  |                               |
| 3        | MS22759/86              | 25                                     | 0                                            | 2.2                        | No                     | Passed                | Yes                  |                               |
| 4        | MS22759/5               | 20                                     | 0                                            | 2.5                        | No                     | Passed                | Yes                  | Light stain on the insulation |
| 5        | BMS13-60                | 25                                     | 0                                            | 2.8                        | No                     | Passed                | Yes                  |                               |
| 6        | BMS13-55                | 25                                     | 0                                            | 3.0                        | No                     | Passed                | Yes                  |                               |
| 7        | BMS13-72                | 10                                     | 0                                            | 3.0                        | No                     | Passed                | Yes                  | But, shield exposed           |
| 8        | MS22759/16              | 25                                     | 0                                            | 3.0                        | No                     | Passed                | Yes                  |                               |
| 9        | MS22759/33              | 25                                     | 0                                            | 3.1                        | Yes                    | Passed                | Yes                  |                               |
| 10       | MS22759/32              | 25                                     | 0                                            | 3.2                        | Yes                    | Passed                | Yes                  |                               |
| 11       | BMS13-48                | 25                                     | 0                                            | 3.6                        | Yes                    | Passed                | Yes                  |                               |
| 12       | MS22759/14              | 25                                     | 1                                            | 3.2                        | Yes                    | Passed                | Yes                  |                               |
| 13       | MS81044/6               | 25                                     | 1                                            | 3.8                        | No                     | Passed                | Yes                  |                               |
| 14       | Fiber Optic Riser Cable | 5                                      | 59                                           | 26.0                       | Yes                    | Failed                | Yes                  |                               |
| 15       | CAT3 Cable              | 6                                      | 80                                           | 26.0                       | Yes                    | Failed                | Yes                  |                               |
| 16       | Neoprene                | 12                                     | 143                                          | 26.0                       | Yes                    | Failed                | Yes                  |                               |
| 17       | CAT5e Cable             | 6                                      | 180                                          | 26.0                       | Yes                    | Failed                | Yes                  | Exceeded 180<br>seconds       |
| 18       | Computer Cable          | 4                                      | 180                                          | 26.0                       | Yes                    | Failed                | Yes                  | Exceeded 180<br>seconds       |
| 19       | Hypalon                 | 8                                      | 180                                          | 26.0                       | Yes                    | Failed                | Yes                  | Exceeded 180<br>seconds       |
| 20       | M17/28-RG58             | 5                                      | 180                                          | 26.0                       | Yes                    | Failed                | Yes                  | Exceeded 180<br>seconds       |
| 21       | MS5086/1                | 25                                     | 180                                          | 26.0                       | Yes                    | Failed                | Yes                  | Exceeded 180<br>seconds       |
| 22       | Silicone 200            | 16                                     | 180                                          | 26.0                       | Yes                    | Failed                | Yes                  | Exceeded 180<br>seconds       |

Note: Heat Flux: 1.7 W/cm<sup>2</sup>, Wires at 7.62 cm from Panel, 1 min Exposure, 3 seconds Pilot



#### **Fireworthy Wire Bundles (Aviation-Grade)**





Non-Fireworthy Wire Bundles (Low Temperature Rating =< 105°C)



## **Final Words**

## **Conclusions:**

✓ Wire bundling did not affect the results of the aviation-grade wires (current), but it increased the flame extinguishing time and burn length of the low temperature rating wires.

 ✓ Wire bundle specimens amplified the results of the single-wire specimens due to additional fuel (material), and radiant/contact heat interaction between the bundled wires.

✓ A wire bundle, instead of a single wire, will be used in the final flammability test method.







•The preferred sample is the wire bundle (homogeneous insulation material). By testing it this way, the applicant will be allowed to test only one wire gage size for all of the gage sizes he may have in his inventory - as long as the insulation material is the same material and from the same manufacturer.

•If the applicant tests a single wire, because it was taken from a piece of avionics equipment or is the only sample they could find (or cost, etc.), it will only be applicable to that wire gage size and material. The applicant will have to test other gage sizes of the same material.

•The minimum sample size is 4 inches. An alligator clip may be used to extend it. It could be a single or bundle wire(s).

