Combating Corrosion in Magnesium Using New Generation Alloys and Modern Coatings such as Tagnite

TECHNOLOGY APPLICATIONS GROUP

BYCELLENCE IN MAGNESIUM SURFACE PROTECTION

Bill Elmquist October 2010

Common Magnesium Concerns

- >Surface Corrosion
- > Galvanic Corrosion
- **▶**Low Abrasion Resistance
- Paint Adhesion

Finishing Options Typical for Magnesium

Conversion Coatings

- Dow 7, created in the 1940's
- > Dow 9, created in the 1940's
- Chrome Manganese, created in the 1940's

Anodize Coatings

- Dow 17, created 1942
- > HAE, created 1955
- > TAGNITE®, created 1992

HAE

HAE, named after inventor Harry A. Evangelides, was patented in 1952. The very high alkaline solution has a pH of approximately 14 and should be operated between 70 and 86° Fahrenheit.

CHEMICAL	Concentration (g/L)
Hydroxide (extremely caustic)	120
Fluoride	35
Potassium Permanganate (strong oxidizer	r) 20
Aluminum Hydroxide	34
Sodium Phosphate	35

Dow 17

The Dow Chemical Company invented Dow 17 in the mid-1940's. The electrolyte has a pH of approximately 5 and should be operated at or above 160° Fahrenheit.

CHEMICAL

Concentration g/L

Ammonium BiFluroide 360 Sodium Dichromate *(hazardous chemical)* 100 Phosphoric Acid 97

Developed in the 1990's with the Clean Air & Clean Water Act in mind, TAGNITE® was designed as a replacement coating for Dow 17 and HAE. The electrolyte's pH range is 12.8-13.2 and operates below room temperature (40-60°F)

CHEMICAL

Concentration (g/L)

 Hydroxide
 4 - 8

 Fluoride
 5 - 10

 Silicate
 15 - 25

No Chromates or Heavy Metals

Chemical Composition as a Percentage of Water

5% * chemical concentration

25%* chemical concentration

56% * chemical concentration

HAE contains heavy metals; Dow 17 contains heavy metals and chromium

Coating Morphology

Dow 17

HAE

All photos shown at 500x magnification.

TAGNITE®

Corrosion Testing

Superior Corrosion Resistance

TAGNITE®, HAE & Dow 17 (Type I) on magnesium alloy ZE41 after 168 hours in salt spray

Only Tagnite Provides Inherent Corrosion Resistance

Superior Galvanic Corrosion Resistance

TAGNITE® 8200

HAE

DOW 17

AZ91E sand cast magnesium test plates assembled using cadmium plated steel bolt/washer & placed in salt spray (ASTM B117) for 1000 hours.

Galvanic Corrosion - HAE

Galvanic Corrosion – Dow 17

Galvanic Corrosion – TAGNITE

Environmentally Clean

Tagnite has been carefully studied and reviewed and by the EPA's Design for the Environment Program and has been granted the status of Partner Formulator

Tagnite Contains

- No Chromium(VI)
- No Heavy Metals
- No Sulfuric Acid
 - No Nitric Acid
- No Hydrofluoric Acid

Tagnite Process Overview

Approximately 120 Minutes From Entering Degrease Station to Entering Drying Station

CH-53

AH-6

F-35 Fighter

F-22 Fighter

Widely Specified

MD 500/600

USMC EFV

KC-135 Tanker

B-52 Bomber

AH-64 Apache

Magnesium Transmission Housing

Magnesium Gearbox

Magnesium Oil Pan

Magnesium Jet Engine Gearbox

- Last B-52 was built in 1962
- Air Force wants to keep them going until 2040
- The B-52 utilizes many magnesium components including several in the pilot yoke/Steering column
- These 48 year old castings still look good, and show few signs of corrosion
- By today's standards, the magnesium alloys used on the B-52 corrode at a very high rate
- Tagnite is on average 10 times more corrosion resistant than what was first used to protect these 48 year old castings

TECHNOLOGY APPLICATIONS GROUP EXCELLENCE IN MAGNESIUM SURFACE PROTECTION

TECHNOLOGY APPLICATIONS GROUP EXCELLENCE IN MAGNESIUM SURFACE PROTECTION

Tagnite is regularly applied to used magnesium castings on the B-52

48 Year Old+ Magnesium Castings

Corrosion Has Not Taken Them Out of Service

48 Year Old+ Magnesium Castings

TECHNOLOGY APPLICATIONS GROUP

48 Year Old+ Magnesium Castings

Corrosion Has Not Taken Them Out of Service

- Last KC-135 Was built in 1965
- Air Force wants to keep them going until 2040
- The KC-135 utilizes many magnesium components including several in flap drive system
- These 45+ year old castings look good, and while some are scraped due to corrosion, many are cleaned and put back into service
- By today's standards, the magnesium alloys used on the KC-135 corrode at high rate
- Tagnite is on average 10 times more corrosion resistant than what was first used to protect these 45+ year old castings

Magnesium Housings Used For Flap Drive Gearboxes

Do these look like 49 year old magnesium castings?

Old magnesium castings cleaned and then Tagnite anodized.

TECHNOLOGY APPLICATIONS GROUP

45 Year Old+
Magnesium Castings
Corrosion Has Not
Taken Them Out of
Service

45 Year Old+ Magnesium Castings Ready to Return to Service

Lockheed P-2V Neptune 1945 - 1962

Neptune Aviation has a fleet of P-2V's which they use as Fire Bombers. The aircraft's magnesium wheels are scheduled to be replaced in 2011.

There is a Long History of Successful Use of Magnesium in Aviation

- Properly protected, magnesium can provide years of trouble free service
- Today's magnesium alloys have a much lower corrosion rate than many of magnesium components that are presently in service
- Today's coatings prevent magnesium corrosion far better than what has historically been used

The Bottom Line: You Can Use Strong, Lightweight Magnesium With Confidence

TECHNOLOGY APPLICATIONS GROUP EXCELLENCE IN MAGNESIUM SURFACE PROTECTION

Bill Elmquist, President belmquist@tagnite.com 1-800-TAGNITE 701-746-1818