

Pool Fire Stability Downstream of Circular Cylinders in an Engine Nacelle Environment

John M. Davis and Norman Toy Engineering & Scientific Innovations, Inc.

Peter J. Disimile UC-FEST

University of Cincinnati

The 6th Triennial International Aircraft Fire & Cabin Safety Research Conference *Atlantic City, New Jersey October 28, 2010*

Introduction

- Aircraft engine nacelles are typically highly cluttered environments
 - Difficult fire zones to protect.
- The T&E community uses simulators as geometrical representations of actual platforms
- Simulator cost is directly related to geometric detail.
 - Small obstructions often omitted.

Experimental Facility

 5, 10, 20, and 40 mm diameter cylinders examined within a representative aircraft engine nacelle airflow.

Inlet Airflow Characterization

- Temperature corrected Constant Temperature Anemometry (CTA) utilized to acquire all velocity and turbulence measurements
 - 5 µm tungsten hot-wire.
 - 25 kHz for 18 sec.
- Freestream airflow measured at 1158 positions across the test section width at x = 112 cm.

Shear Layer Measurements

- Boundary layer measurements acquired at 4 streamwise positions along test section centerline.
 - Without clutter.
 - Two-dimensionality also checked at 5 spatial locations.
- Shear layer measured at 4 streamwise positions downstream of each clutter.
- For all shear layer measurements
 - Initial probe position at y = 0.25 mm.
 - 90 variably spaced locations.

Inlet Airflow Characterization

- Velocity measured within +/- 6% across center 55% of test section.
- Freestream velocity and TI of 8.4 m/s and 1%

Boundary Layer Profiles

x (cm)	z (cm)	δ ₉₉ (mm)	δ* (mm)	θ (mm)	н	C _f	u* (m/s)
120	0	38.3	6.9	5.0	1.38	0.0035	0.37
144	0	39.3	6.7	5.0	1.34	0.0032	0.32

Engineering & Scientific Innovations, Inc • Cincinnati, OH, 45248 • (513) 574 - 3164

7

Flow Visualization

- Helium bubbles were injected into the flow upstream of the clutter elements.
- Bubbles were illuminated with offaxis light and the traces recorded using a high speed video camera with a side-view perspective.
- Video shows He bubbles injected upstream of the 20 mm diameter clutter.
 - Recirculation region clearly observed.

Velocity and TI Profiles

Turbulence Length Scales

10

Recirculation Length

- The recirculation length was measured using cotton tufts and Helium bubble flow visualization.
- The length of the downstream recirculation region, X_r , was observed to be linearly dependent on the ratio δ_{99}/D .
 - Comparable to previously reported fence flow data.

*Atli, V., "Subsonic Flow over a Two-Dimensional Obstacle Immersed in a Turbulent Boundary Layer on a Flat Surface," Jo. Of Wind Eng. And Ind. Aero., Vol. 31, No. 2-3, 1988, pp. 225-239.

Free Shear Layer Spread Rate

- The spread rate of the free shear layer was observed to linear.
 - Slope of 0.156 δ_{ω}/x
- Comparable to other free shear flows.
 - Previously reported backward step data displayed as red dashed lines.

Free Shear Layer Trajectory

- The trajectory of the shear layer was observed by measuring the location of the shear center at each downstream location.
- Two different trajectories were observed:
 - Previously unreported for any shape obstruction.

Effect of Clutter Size on TKE

- The TKE was also observed to be dependent on the δ_{99} /D ratio.
- As δ_{99} /D increased, max. TKE decreased.
- Again, TKE appears to approach an asymptotic value.

Effect of Clutter Size on Turbulence Length Scale

Engineering & Scientific Innovations, Inc • Cincinnati, OH, 45248 • (513) 574 - 3164

15

Fire Test Videos

No Clutter (Baseline)

5mm Clutter 6D Upstream

40mm Clutter 6D Upstream

Color Fire Test Video Analysis

 Baseline condition

5

- Rim-stabilized wrinkled flame.
- Rim-stabilized wrinkled flame.
- Transitional flame.
- Wake-stabilized flame.

Summary

- The free shear layer separated from the clutter was observed to reside within a residual shear region from the upstream boundary layer flow.
 - However, the free shear layer spread rate was observed to be similar to other free shear flows.
- Evidence of a cut-off δ_{99}/D was observed. – On the order of $\delta_{99}/D = 4$.
- When the clutter is reduced below 1/4th of δ_{99} The free shear layer will maintain a constant
 - height.
 - TKE, $\Lambda,$ and λ will maintain constant levels.

Summary

- The 40 mm clutter ($\delta_{99}/D < 4$) was observed to create a wake-stabilize flame within the confines of its downstream recirculation region.
- In contrast, the 5 and 10 mm clutter ($\delta_{99}/D > 4$) was observed to create a rim-attached wrinkled flame.
- The 20 mm clutter was observed to create a transitional flame.
- Therefore, it appears that when $\delta_{99}/D > 4$, the cylinder acted as a bluff body, whereas, for $\delta_{99}/D < 4$, the clutter sufficiently increased the turbulence scales enough to create a stable flame region deep within the boundary layer flow.

Acknowledgements

- The presenters would like to extend their gratitude to the following organizations:
 - United States Air Force Office of Scientific Research (AFOSR)
 - USAF 780th Aerospace Survivability and Safety Test Squadron.