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Background
• LOC = Limiting Oxygen Concentration required 

for ignition during nitrogen inerting
• Military used 9% as design criterion based on 

Bureau of Mines suggestion of 20% safety margin
• Recently changed by FAA to12% based on:

– Recent FAA LOC tests
– Review of prior test data
– More cost effective inerting technology
– Probabilistic argument on what is a sufficient level of 

safety improvement for the entire fleet
• This talk addresses factors affecting LOC test data

– Review of test data on LOC
– Calculation of LOC from modeling



Historical Data on LOC (Zinn)



Experimental Ranges 
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Example of Determining LOC, JP-8, Ott

Sea Level, Static                       Sea Level, Slosh
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Limiting Oxygen Concentration, 
JP-8/Jet A, All data
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Limiting Oxygen Concentration, 
JP-4, All Data
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General Observations

• General agreement on effect of altitude
• LOC lower for JP-4 than JP-8/Jet A
• Uncertainty in LOC data is +/- 0.5% for a given 

set of conditions with most experimental setups
• Effect of ullage temp. important but little data 
• BlazeTech model predicts correct dependence of 

LOC on ullage temperature
• Some reports we could not obtain 
• Many factors can decrease LOC below 12%



Reported Drops in LOC below 12%
1. Source Strength/Ignition Criteria:

– Effect: WPAFB ≈ 0%, Bu.Mines 0.5%, U.CA 1.5% (inc source)
– Well covered by FAA study: ~ 1% 

2. Ullage Temperature: 
– ≈ 0.5% if ullage at 200°F
– 1.5% from 125 to 140 F

3. Vibration and slosh:
– Boeing used hexane vapor and mist. Effect 1%±0.5%
– WPAFB: no effect 1971; 2% 2008 at 130 F

4. Gradients in Concentration: Depends on mixing. 
– U.CA 0.5% with fan that aids mixing
– O2 enters tank near vent

5. Variations in Jet A composition depending on grade:
– Based on results for JP-4 vs. JP-8/Jet A

Combined Effect is neither obvious nor additive



Model of Ullage Flammability –
Overall Architecture

Fuel Conditions: type, amount &
temperature

Tank Geometry and dimensions

Ignition Characterization: Source
location, type and strength

Flight Profile: Altitude versus time,
Fuel extraction rate to engine, and Fuel
and tank wall temperatures

BlazeTank

Model Inputs

Temp.  and concentration vs.
height and time

Flammable volume inside fuel
tank

Ignition and Propagation

If ignition occurs, Temp., burn 
rate and Overpressure vs. time

Limiting Oxygen Concentration

Output

Inerting: ground vs. in-flight and 
percent concentration



Deflagration Module in BlazeTank 
• Key assumptions

– Ullage consists of 2 zones: 
premixed unburned gases and 
burned gases separated by a flame 
sheet

– Unburned gases are pressurized by 
expanding burnt zone

– Pressure in ullage remains 
spatially uniform because it 
equilibrates at acoustic speed >> 
deflagration speed

• BlazeTank solves the coupled 
equations of:

– Continuity
– Energy conservation
– Species conservation
– Experimental burn rate (fuel, 

stoichiometry, T and P)

Burned Gases
P, Tb, ρb, ub

Unburned Gases
P, Tu, ρu

uf

Flame front



Burning Velocity Model
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where 
φ = equivalence ratio
T = temperature 
p = pressure 
Β = fitting constants for laminar burning velocity calculation

Subscripts 
m = condition at which the burning velocity is maximum 
ref = reference conditions

Source: Metghalchi, M. and Keck, J.C., Combustion and Flame 48:191 – 210  (1982)



Comparison of BlazeTank Model 
Predictions with Quarter Scale Test Data
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Comparison of BlazeTank Model 
Predictions with HYJET Test Data
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Equilibrium Calculation

• Several codes available
– NASA Equilibrium code
– CANTERA

• Calculates temperature and product composition
• Issues

– Combustion at constant pressure or constant volume 
– Differences in how unburnt carbon is treated
– Lean versus rich



Equilibrium Products Composition



Adiabatic Flame Temperature for Alkanes
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LOC Predictions by BlazeTank 
First Approach: Flame Temperature Cut-off

= 1 atm
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Inerting of JP-4 
25°C, 1 atm

N2

Experimental Data 
(Zabetakis WADC TR52-35 
Sup 4, 1956)

BlazeTank Model for N2 
inerting:

Matching LOC

Matching Flammability   
Limits in Air

Doesn’t match both LFL,UFL and LOC



Conclusions
• Recent FAA tests generated good data on LOC over a range 

of conditions
• Additional conditions that can lower LOC: 

– Ullage temperature, slosh and vibration, variations in fuel 
composition and gradient effects

• Their combined effect is not obvious nor additive 
• Effect can be quantified by testing or modeling (BlazeTank)
• Modeling can be used to optimize:

– The design of inerting systems
– Their operation (when and how much to inert) so as to 

minimize system size and load on engine
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