Factors Affecting the Limiting Oxygen Concentration Required for Ignition in an Aircraft Fuel Tank

Presented by
N. Albert Moussa and Venkat Devarakonda
BlazeTech Corporation
29 B Montvale Ave., MA 01890
Phone: 781-759-0700 Fax: 781-759-0703 www.blazetech.com

at
6th Triennial International Aircraft Fire & Cabin Safety Research Conf.
Atlantic City, NJ
October 25-28, 2010
Background

• LOC = Limiting Oxygen Concentration required for ignition during nitrogen inverting
• Military used 9% as design criterion based on Bureau of Mines suggestion of 20% safety margin
• Recently changed by FAA to 12% based on:
 – Recent FAA LOC tests
 – Review of prior test data
 – More cost effective inverting technology
 – Probabilistic argument on what is a sufficient level of safety improvement for the entire fleet
• This talk addresses factors affecting LOC test data
 – Review of test data on LOC
 – Calculation of LOC from modeling
Historical Data on LOC (Zinn)

FIG. 9 COMPOSITE CHART OF INERTING REQUIREMENTS AS PLOTTED FROM LITERATURE SEARCH
Experimental Ranges

Altitude

Ullage Temperature

Source Strength

Ignition Criteria

Vibration, Slosh, and Mist

Fuel Composition

- Experimental Ranges

- Vibration, Slosh, and Mist

- Ullage Temperature

- Source Strength

- Ignition Criteria

- Altitude

- Fuel Composition

- FAA 2004
- Bu. Mines Kerosene 1965
- Ott WPAFB 1971
- Bu. Mines JP-4 1956
- U. CA 1955
- Boeing 1951
- Anderson WPAFB 1978
- Tyson NWC 1991
Example of Determining LOC, JP-8, Ott

Sea Level, Static

Sea Level, Slosh

Oxygen Percent

Fuel Vapor Percent By Volume

- Ott Sea Level Static Fire
- Ott Sea Level Static No Fire
- Ott Sea Level Static Boundary

Ott Sea Level Slosh Fire
Ott Sea Level Slosh No Fire
Ott Sea Level Slosh Boundary
Limiting Oxygen Concentration, JP-8/Jet A, All data

Oxygen Percentage vs. Fuel Vapor Percentage graph with various conditions and altitudes:
- Kerosene 50 kft Stewart
- Dynamic Conditions Disimile
- AN-F-32 Gunfire Stewart
- Static Sea Level
- Slosh Sea Level
- Sea Level
- Ott
- Summer

Conditions: 20 kft, 30 kft, 38 kft
Limiting Oxygen Concentration, JP-4, All Data

Y-axis: Oxygen Percentage
X-axis: Fuel Vapor Percentage

Legend:
- Zabetakis
- Starkman No Fan
- Starkman Fan
- SeaLevel
- 10kft
- 20kft
- 30kft
- 40kft
- 50kft
- 60kft
General Observations

- General agreement on effect of altitude
- LOC lower for JP-4 than JP-8/Jet A
- Uncertainty in LOC data is +/- 0.5% for a given set of conditions with most experimental setups
- Effect of ullage temp. important but little data
- BlazeTech model predicts correct dependence of LOC on ullage temperature
- Some reports we could not obtain
- Many factors can decrease LOC below 12%
Reported Drops in LOC below 12%

1. Source Strength/Ignition Criteria:
 - Effect: WPAFB ≈ 0%, Bu.Mines 0.5%, U.CA 1.5% (inc source)
 - Well covered by FAA study: ~ 1%
2. Ullage Temperature:
 - ≈ 0.5% if ullage at 200°F
 - 1.5% from 125 to 140°F
3. Vibration and slosh:
 - Boeing used hexane vapor and mist. Effect 1%±0.5%
 - WPAFB: no effect 1971; 2% 2008 at 130°F
 - U.CA 0.5% with fan that aids mixing
 - O₂ enters tank near vent
5. Variations in Jet A composition depending on grade:
 - Based on results for JP-4 vs. JP-8/Jet A

Combined Effect is neither obvious nor additive
Model of Ullage Flammability – Overall Architecture

Model Inputs

Fuel Conditions: type, amount & temperature
Tank Geometry and dimensions
Ignition Characterization: Source location, type and strength
Flight Profile: Altitude versus time, Fuel extraction rate to engine, and Fuel and tank wall temperatures
Inerting: ground vs. in-flight and percent concentration

BlazeTank

Output

Temp. and concentration vs. height and time
Flammable volume inside fuel tank
Ignition and Propagation
If ignition occurs, Temp., burn rate and Overpressure vs. time
Limiting Oxygen Concentration
Deflagration Module in BlazeTank

- Key assumptions
 - Ullage consists of 2 zones: premixed unburned gases and burned gases separated by a flame sheet
 - Unburned gases are pressurized by expanding burnt zone
 - Pressure in ullage remains spatially uniform because it equilibrates at acoustic speed $>>$ deflagration speed

- BlazeTank solves the coupled equations of:
 - Continuity
 - Energy conservation
 - Species conservation
 - Experimental burn rate (fuel, stoichiometry, T and P)
Burning Velocity Model

\[S_L = \left[B_m + B_2 (\phi - \phi_m)^2 \right] \cdot \left(\frac{T}{T_{ref}} \right)^{2.18-0.8(\phi-1)} \cdot \left(\frac{p}{p_{ref}} \right)^{-0.16+0.22(\phi-1)} \]

where

- \(\phi \) = equivalence ratio
- \(T \) = temperature
- \(p \) = pressure
- \(B \) = fitting constants for laminar burning velocity calculation

Subscripts

- \(m \) = condition at which the burning velocity is maximum
- \(ref \) = reference conditions

Comparison of BlazeTank Model Predictions with Quarter Scale Test Data

J. E. Shepherd et al, “Results of 1/4-scale experiments, vapor simulant and liquid Jet A tests”
Explosion Dynamics Laboratory Report FM 98-6, July 1998
Comparison of BlazeTank Model Predictions with HYJET Test Data

J. E. Shepherd et al, “Results of 1/4-scale experiments, vapor simulant and liquid Jet A tests” Explosion Dynamics Laboratory Report FM98-6, July 1998
Equilibrium Calculation

- Several codes available
 - NASA Equilibrium code
 - CANTERA
- Calculates temperature and product composition
- Issues
 - Combustion at constant pressure or constant volume
 - Differences in how unburnt carbon is treated
 - Lean versus rich
Equilibrium Products Composition
Adiabatic Flame Temperature for Alkanes
(No inerting)
LOC Predictions by BlazeTank

First Approach: Flame Temperature Cut-off

Adiabatic Flame Temperature of Jet-A Vapors

Jet-A Vapor (\approxC$_9$H$_{18}$)
$T_0 = 298.15$ K
$P_0 = 101325$ Pa $= 1$ atm

Oxygen Percentage (at LOC)

20.7
18.6
16.5
14.5
12.4
10.3
8.3

Does not know the cut-off temperature a priori
Inerting of JP-4

25°C, 1 atm

Doesn’t match both LFL, UFL and LOC

Experimental Data
(Zabetakis WADC TR52-35 Sup 4, 1956)
BlazeTank Model for N2 inerting:
- Matching LOC
- Matching Flammability Limits in Air
Conclusions

• Recent FAA tests generated good data on LOC over a range of conditions
• Additional conditions that can lower LOC:
 – Ullage temperature, slosh and vibration, variations in fuel composition and gradient effects
• Their combined effect is not obvious nor additive
• Effect can be quantified by testing or modeling (BlazeTank)
• Modeling can be used to optimize:
 – The design of inerting systems
 – Their operation (when and how much to inert) so as to minimize system size and load on engine
References

- Summer, “Limiting Oxygen Concentration Required to Inert Jet Fuel Vapors Existing at Reduced Fuel Tank Pressures”, DOT/FAA/AR-04/8, 2004