Aircraft Fire Safety R&D: Past, Present & Future

Gus Sarkos Manager, Fire Safety Team FAA Wm. J. Hughes Technical Center Atlantic City International Airport, NJ 08405

The 6th Triennial Fire & Cabin Safety Research Conference Tropicana Casino Resort; Atlantic City, NJ October 25 – 28, 2010

Federal Aviation Administration

An Awesome Challenge: Aircraft Fire Safety (and R&D)

- Fire Protection in a Densely Populated and Isolated Cylinder Amid:
 - Flammable Jet Fuel
 - Plastic Interior Materials and Wiring
 - Passenger Carry-Ons
 - Passenger Stowed Luggage
 - Cargo of all Sorts
 - Declared and Undeclared Hazardous Materials

1980's

R&D Drivers

- Fire Fatalities in Survivable Accidents
- Material Flammability
- Material Smoke (Obscuration) Emissions
- Material Toxic Gas Emissions
- L-1011, Riyadh, 8/80
- DC9, Cincinnati, 6/83
- 737, Manchester, 8/85

<u>R&D</u>

- Seat Cushion Fire Blocking Layers
- Heat Release Rate (OSU) Test Method for Large Surface Area Cabin Materials
- Electrical Wiring Arc Tracking
- Cargo Liner Burnthrough Resistance
- Aircraft Material Fire Test Handbook
- Seat Gasoline Fire Extinguishment (Halon 1211 Hand-Held Extinguisher)
- Floor Proximity Lighting
- Passenger Smoke Hoods (Reexamined)
- Cabin Water Spray
- In-Flight Smoke Venting

<u>Note:</u> Full-Scale Fire Test Facility became Operational in 1980

Saudia L-1011

Riyadh, Saudi Arabia; August 19, 1980

Manchester Accident

Full-Scale Fire Test Facility

Postcrash Fire Test

Seat Fire Blocking Layer Benefits

Heat Release Rate Test for Cabin Materials

Cabin Water Spray Results (707) External Fuel Fire/Fuselage Opening/Wind

Red = Standard & Green = Waterspray

1990's

R&D Drivers

- Aviation Safety Research Act of 1988
- Ban on Global Production of Halon (1/94)
- DC9, Everglades, 5/96
- 747, New York, 7/96
- MD11, Nova Scotia, 9/98

<u>R&D</u>

- Halon Replacement
- Exploding Aerosol Cans
- Fuel Tank Flammability
- Ground Based Inerting Cost Analysis
- Thermal Acoustic Insulation
 - Radiant Panel Test (In-Flight Fire Ignition Resistance)
 - Oil Burner Test (Postcrash Fire Burnthrough Resistance)
- Flight Data Recorders Fire Resistance
- Aircraft Command in Emergency Situations (ACES)
- Fire Research Program (Ultra-Fire Resistant Materials)

Trans World Airlines Boeing B747-131; July 17, 1996

Swiss Air MD-11

Peggy's Cove, Nova Scotia; September 2, 1998

Current Usage of Halon 1301/1211

Cargo Compartments

Hand Held Extinguishers

Engine Nacelles

Lavatory Trash Receptacles

Schematic of Radiant Panel Test Apparatus

Burnthrough Test Apparatus

2000's

R&D Drivers

- NTSB & TSB Accident-Related Recommendations
- Composite Transport Aircraft (B787)
- Halon Replacement Activities
- 737, Bangkok, 3/01
- DC8, Philadelphia, 2/06
- 747, Dubai, 9/10

<u>R&D</u>

- Insulation Advisory Circulars
- Next Generation Burner
- Improved Fire Tests for Ducting and Wiring
- On-Board Inerting System (OBIGGS)
- Limiting Oxygen Concentration
- Composite Fuselage and Wings
- Magnesium Seat Structure
- Lithium Battery Fire Hazards
- Freighter Fire Suppression
- Halon Replacement
 - Fire Research Program

NTSB Recommendation to the FAA

"Require that fire suppression systems be installed in the cargo compartments of all cargo airplanes operating under 14 *Code of Federal Regulations* Part 121. (A-07-99)"

Test Apparatus

• On this horizontal surface, place the specimen holder so that the wire bundle specimen is $3\pm1/16$ (7.62±0.16 cm) inches away from the radiant heat panel and clears the pilot burner.

Schematic of On-Board Inert Gas Generation System (OBIGGS)

Full-Scale Test Results, Structural Composite System *Post-Test*

Lithium-Ion Batteries

Bulk Load Configuration before Testing

Bulk Load Configuration after Testing

Microscale Combustion Calorimetry Reproduces Elements of Flaming Combustion in Non-flaming Laboratory Test

2010's?

- Freighter Fire Suppression
- Lithium Battery Safety
- Hidden Fire Detection and Extinguishment
- Halon Replacement
- Material Flammability FAR's Improvement
- Powerplant Flammability Standardization
- Fire Research (Long Range)
- Oxygen Systems

COMPLACENCY

- Complacency is a Concern
- Major Reduction in Accident Rate Tends to Promote Status Quo
- Accident Statistics can be Misleading
- Aircraft Fire Safety Merits Continuous Improvement Because of Ever Present Potential

Cabin Fire Caused by Lighning Strikes

Boeing 757 Copenhagen, Denmark 11/15/2000 American MD-80 Dulles Airport 11/29/2000

SUCCESS

Pursue Improvements that are <u>PRACTICAL</u> and <u>COST/BENEFICIAL</u>

Cooperation ... Cooperation ... Cooperation.

