A Comparative Evaluation of Two Helicopter Crash Tests

Karen E. Jackson, Sotiris Kellas, and Martin S. Annett
NASA Langley Research Center
Hampton, VA

Justin D. Littell and Michael A. Polanco
ATK Space Systems
Hampton, VA

6th Fire and Cabin Safety Conference
Atlantic City, New Jersey
October 25-28, 2010
OUTLINE

• Introduction
 - Subsonic Rotary Wing (SRW) Crash Research Program
 - Composite Honeycomb Deployable Energy Absorber (DEA)
 - Summary of DEA development
 - Presentation Objectives

• Full-Crash Crash Test Program
 - Test article set-up, component testing, and test conditions
 - Onboard experiments and instrumentation

• Comparative Results
 - Test video
 - Structural damage
 - Occupant injury assessment

• Conclusions
SRW CRASH RESEARCH OBJECTIVES

➢ Develop an advanced composite structural concept for improved energy absorption
 • Develop an externally-deployable composite honeycomb energy absorbing concept and study deployment options
 • Demonstrate the effectiveness of the concept through testing utilizing a building block approach
 • Optimize the concept for multi-terrain applications

➢ Demonstrate improved prediction of rotorcraft crashworthiness
 • Multi-terrain impact simulation
 • Human occupant simulation and injury prediction
 • Probabilistic analysis and uncertainty quantification
 • System-integrated helicopter crash test, simulation, and model validation study

Artistic depictions of DEA rotorcraft applications
DEPLOYABLE ENERGY ABSORBER (DEA)

- A novel composite honeycomb energy absorber deployed using mechanical or pneumatic methods
- GOAL: Demonstrate the effectiveness of the concept using a building block approach
- Optimize the concept for multi-terrain applications

Square cell schematic

Flexible hinge

Linear deployment

Radial deployment

Component crush test

Crush Stress, psi

Crush Stroke, %
SUMMARY OF DEA DEVELOPMENT

Materials Testing
- Dynamic Crush Tests
 - Soft soil, 38-fps
 - Water, 25-fps
 - Rigid surface, 38.4-fps

Three-Pt Bend Testing of Single Hex Cells
- ±45° Kevlar fabric loaded in tension

Dynamic Crush Tests
- 59- and 104-Cell DEA components

Multi-Terrain Impact Testing
- Rigid surface, 38.4-fps
- Water, 25-fps
- Soft soil, 38-fps
SUMMARY OF DEA DEVELOPMENT

Crash Test of an MD-500 with DEA

System-Integrated Finite Element Model

Close-up View

Shell-Based Model of the DEA
OBJECTIVES

This presentation will:

• Describe the full-scale crash test program including test conditions, hardware set-up, instrumentation, and onboard experiments

• Provide test video highlighting two crash tests of the MD-500 helicopter, one test performed with an external energy absorber and the second without

• Summarize and compare test results including: structural damage, and occupant injury assessment
FULL-SCALE CRASH TEST PROGRAM

- Test conducted at NASA Langley Landing and Impact Research Facility (LandIR)
- MD-500 test article and solid geometry provided by US Army Mission Enhanced Little Bird (MELB) Program
- Conduct two full-scale crash tests of the MD-500 helicopter with and without deployable energy absorber (DEA) at LandIR
- 26-ft/s vertical and 40-ft/s forward velocity, zero pitch
- 3,000 lb expected gross takeoff weight (airframe weight ~ 500 lb)
Test Objectives

- To evaluate the performance of the DEA under realistic crash test conditions

- To generate test data to validate a system-integrated LS-DYNA finite element model that includes accurate physical representations of the:
 - airframe
 - shock struts
 - occupants
 - skid gear
 - seats
 - restraints
 - ballast
 - impact surface
 - external DEA

- To generate test data to evaluate thoracic injuries, including aortic rupture, during helicopter crash impacts
FULL-SCALE CRASH TEST PROGRAM

Test Article: MD-500 Helicopter

- Manufactured by MD Helicopters
- 3,000-lb max gross weight
- Defender - Manned military version
- Little Bird - US Army Special Operations
- Civilian utility helicopter
- 156 knots max speed
- 300 nautical mile range
- 31-ft long, 9-ft tail height
Photograph of as-received helicopter

Test Article Modifications

• Repaired damage caused by tie-down pull tests

• Due to anticipated attachment failures, replaced the existing oleo-pneumatic shock struts with inversion crush tube struts designed in-house

• Added four layers graphite/epoxy fabric to cover openings in the lower skin

• Purchased and installed two crew seats and one bench passenger seat with restraints

• Added ballast to represent the engine, rotor transmission, fuel, and tail cone

• Fabricated and installed two DEA blocks (front block at 20°, rear block at 0°)
Crush Tube Shock Strut Design and Testing

Graphite Overwrap

Shock strut compression test

Cut-away view of crush tube post-test

Drop Mass

Guide Rails

Test Article

Test Fixture Base

Load response of crush tube

Load, lb.

Time, s

FULL-SCALE CRASH TEST PROGRAM

Crush Tube Shock Strut Design and Testing

Graphite Overwrap

Full-scale crash test program

Shock strut compression test

Cut-away view of crush tube post-test

Graphite Overwrap

Load response of crush tube

Load, lb.

Time, s
<table>
<thead>
<tr>
<th>Role</th>
<th>Crew Position</th>
<th>Anthropomorphic Dummy Type</th>
<th>Restraint Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot</td>
<td>Front left crew</td>
<td>50th percentile Hybrid III male</td>
<td>4-pt. restraint</td>
</tr>
<tr>
<td>Copilot</td>
<td>Front right crew</td>
<td>50th percentile Hybrid II male</td>
<td>4-pt. restraint</td>
</tr>
<tr>
<td>Passenger</td>
<td>Rear left side</td>
<td>HSTM/50th Hybrid III male</td>
<td>3-pt. restraint</td>
</tr>
<tr>
<td>Passenger</td>
<td>Rear right side</td>
<td>50th percentile Hybrid II male</td>
<td>3-pt. restraint</td>
</tr>
</tbody>
</table>
• Two DEA blocks were mounted beneath the belly skin of the airframe

• Each DEA block consisted of multiple hexagonal cells, with 1-in. cell wall length, fabricated of ±45° Kevlar-129 fabric/epoxy

• The cells in the front block were canted by 20° with respect to the vertical direction, while the cells in the rear block were oriented vertically. This configuration improved vehicle stability.

Each block weighed 14-lb. and was designed for 20-psi crush stress.
FULL-SCALE CRASH TEST PROGRAM

Instrumentation Summary

- 46 ATD channels
- 8 belt loads
- 1 IRIG
- 32 single strain gages
- 7 strain gage rosettes
- 12 single vertical accels
- 12 tri-axial accels
- 4 load cells

160 total channels
Video of MD-500 Crash Test with DEA
Video of MD-500 Crash Test without DEA
COMPARATIVE RESULTS

Test Conditions

<table>
<thead>
<tr>
<th>Impact Condition</th>
<th>Planned Values</th>
<th>Test #1 Actual</th>
<th>Test #2 Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward velocity</td>
<td>40-fps</td>
<td>38.7-fps</td>
<td>39.1-fps</td>
</tr>
<tr>
<td>Vertical velocity</td>
<td>26-fps</td>
<td>25.5-fps</td>
<td>24.2-fps</td>
</tr>
<tr>
<td>Resultant velocity</td>
<td>47.8-fps</td>
<td>46.3-fps</td>
<td>46.0-fps</td>
</tr>
<tr>
<td>Roll attitude</td>
<td>0°</td>
<td>7.0°</td>
<td>6.2°</td>
</tr>
<tr>
<td>Pitch attitude</td>
<td>0°</td>
<td>5.7°</td>
<td>1.9°</td>
</tr>
<tr>
<td>Yaw attitude</td>
<td>0°</td>
<td>9.3°</td>
<td>2.1°</td>
</tr>
</tbody>
</table>
COMPARATIVE RESULTS

Structural Damage – Test #1 with DEA

- Minor damage to the front right side subfloor and outer skin, which was repaired
- No damage to seats, keel beam, or airframe
- Skid gear, shock struts, seats, and restraints were replaced for the second test
COMPARATIVE RESULTS

Structural Damage – Test #2 without DEA

- Failure of crew and passenger seats
- Failures of keel beam & subfloor frames
- Outer skin buckling and rupture
- Bearing failures of the skid gear
- Buckling of the center bulkhead
COMPARATIVE RESULTS

Shock Strut Crush Data

<table>
<thead>
<tr>
<th>Crush Tube Position</th>
<th>Test #1 Stroke, in.</th>
<th>Test #2 Stroke, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Left</td>
<td>3.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Front Right</td>
<td>5.3</td>
<td>5.5</td>
</tr>
<tr>
<td>Rear Left</td>
<td>2.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Rear Right</td>
<td>5.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Total stroke difference = 6.8 inches. For an average crush load of 2,000-lb, the total energy dissipated is 1,133 ft-lb, which is equivalent to 0.87-ft/s lower vertical velocity for the 2nd test.

Post-test photo of shock struts following Test #1
COMPARATIVE RESULTS

Passenger Floor, Vertical Response

Occupants Exposed to Minor and Severe Vertical Loads

No DEA

DEA
COMPARATIVE RESULTS

Pilot Lumbar Load Response

- JSSG = 2,065 lb
- FAA = 1,500 lb

No DEA
DEA

Lumbar Load (lb) (E+3)

Time (sec)
Both Hybrid III and HSTM experienced similar loading through the pelvis and spine

- Matched peak decelerations and deceleration shape
- Introduction of DEA reduced peak deceleration by 67% (28 g)
Increased surrogate biofidelity provides soft-tissue responses not previously investigated.

Test with DEA shows a significant drop in pressure response.

Pressure levels for drop test without DEA indicate potential for serious injury.
Conclusions

- Two full-scale crash tests of an MD-500 helicopter were conducted, one retrofitted with an external energy absorber and the second in a baseline configuration.

- Excellent performance demonstrated by DEA’s:
 - Floor level acceleration peaks reduced from 40- to 12-g
 - Lumbar loads reduced from 2,000 lb. to 700 lb.

- Successful application of a biofidelic dummy to generate soft-tissue responses.