Selection of Appropriate Child ATDs for Aviation Child Restraint System Testing

Presented to: Sixth Triennial International Aircraft and Cabin Safety Research Conference

By: Amanda M Taylor

Date: October 26,2010

Outline

- Child Restraints for Aircraft Use
- Test Dummies Cited in Aviation Standards
- Test Dummies Cited in Auto Safety Standards
- Test Dummy Selection for Minimum Performance Standards
- Innovative Aviation Unique Child Restraints
- Test Dummy Selection for Research

- Automotive CRS (Child Restraint System) have been allowed on aircraft since 1985.
- Must meet performance/design criteria defined in FMVSS-213.
 - FMVSS-213 specifies requirements for child restraint systems used in motor vehicles and aircraft.
- This standard is updated regularly by NHTSA* to reflect safety advancements.
 - FMVSS-213 last updated August 2005

*NHTSA – National Highway Traffic Safety Administration

Two approval methods have been used for Aviation Unique CRS:

1) TSO-C100b (references SAE AS5276/1)

- Reflects testing techniques, technology, and injury criteria cited in FMVSS-213 at the time of publication.
- Neither have been updated since initial publication.
 - TSO published in 2002
 - AS5276/1 published in 2000
- Do not have to meet FMVSS-213

Two approval methods have been used for Aviation Unique CRS:

2) Approved by Type Certificate, Supplemental Type Certificate, or 14CFR21.305(d)

- Must provide an Equivalent Level of Safety to TSO-C100b.
- Unique minimum performance standards (MPS) are developed for each device.
- Do not have to meet FMVSS-213

- Since the development of the Aviation
 Standards for CRS, the automotive standard has been revised significantly.
- CAMI has conducted a review of the revised requirements for potential application to aircraft.
 - Advanced Anthropomorphic Test Dummies (ATD) cited in the revised standard can provide safety benefits for aviation unique CRS.

Test Dummies Cited in Aviation Standards

- ATDs cited in AS 5276/1
 - CAMI Newborn
 - TNO 9-month-old
 - VIP 3-year-old
- These are the same ATDs called out in FMVSS-213 for use up till 2005.

CAMI Newborn

Aft facing only

- Construction
 - Leather skeleton
 - Cast lead or aluminum blocks attached to skeleton to achieve correct mass distribution and limit joint range of motion.
 - Polyurethane foam padding applied over the skeleton to achieve proper shape.
 - Covered in marine canvas laced together.
 - The ATD contains no instrumentation.

– Defined in:

• 49 CFR Part 572, subpart K adopted in 1993.

CAMI Newborn

- The CAMI newborn was scaled from a 6-monthold that had been developed at CAMI in 1972 and defined in 49 CFR Part 572, subpart D.
- Evaluation Criteria Produced
 - Angle between the CRS back support surface and vertical shall not exceed 70°.
 - ATD torso shall be retained within the CRS, the Head CG shall not pass the forward-most and top-most points on the CRS surfaces.

TNO 9-month-old

Aft and forward facing

Construction

- Constructed mainly of polyurethane rubber parts.
- A single cable runs from the head to the pelvis, and the dummy's parts are essentially stacked on this cable.
- A foam insert serves as the abdomen, and the pelvis is made of a ceramictype material covered in polyurethane.

– Defined in:

 49 CFR Part 572 subpart J adopted in 1991

Hagedorn, A.V. and Pritz, H.B., " Evaluation of the CRABI 12-Month-Old Infant Dummy and Its Comparison With the TNO P3/4," NHTSA Docket #99-5156, February, 1999.

Exploded View of the TNO P3/4

TNO 9-month old

- Evaluation Criteria Produced
 - Aft Facing Requirements
 - Maximum value for HIC after head contact is not to exceed 1000.
 - Angle between the CRS back support surface and vertical shall not exceed 70°.
 - ATD torso shall be retained within the CRS, the Head CG shall not pass the forward-most and top-most points on the CRS surfaces.

TNO 9-month old

- Evaluation Criteria Produced (cont.)
 - Forward Facing Requirements
 - Maximum value for HIC after head contact is not to exceed 1000.
 - Chest acceleration shall not exceed 60g's, except during a cumulative 3 millisecond interval.
 - ATD head shall not pass through a vertical transverse plane 813 mm forward of the seat back pivot axis on the standard seat fixture.
 - ATD knee pivot shall not pass through a vertical transverse plane 915 mm forward of the seat back pivot axis on the standard seat fixture.

VIP 3-Year old

Forward facing only

- Construction
 - The VIP (Very Important Person) has steel skeletal components with some aluminum and bronze joints
 - Natural rubber neck
 - Vinyl skin chest jacket covering a separate urethane foam chest flesh
 - Natural rubber lumbar spine
 - Vinyl skin and vinyl foam flesh arms and legs

http://www.ftss.com/crash-test-dummies/children/vip-3-year-old

VIP 3-Year old

– Defined in:

49 CFR Part 572 subpart C adopted in 1979

Evaluation Criteria Produced

- Maximum value for HIC after head contact is not to exceed 1000.
- Chest acceleration shall not exceed 60g's, except during a cumulative 3 millisecond interval.
- ATD head shall not pass through a vertical transverse plane 813 mm forward of the seat back pivot axis on the standard seat fixture.
- ATD knee pivot shall not pass through a vertical transverse plane 915 mm forward of the seat back pivot axis on the standard seat fixture.

Test Dummies Cited in Automotive Safety Standards

- Advanced Test dummies cited in current FMVSS-213 and FMVSS-208 (for out-ofposition airbag testing):
 - CAMI newborn (unchanged)
 - CRABI 12-month-old
 - Hybrid-III 3-year-old

Aft and forward facing

- Construction
 - The CRABI (Child Restraint Air Bag Interaction) design was somewhat based on the Hybrid-III family of dummies, but provides response sensitivity while in a rear facing restraint.
 - Steel skeletal components with a segmented neck and spine. Vinyl skin chest jacket covering a separate urethane foam chest and abdomen

http://www.nhtsa.gov/Research/CRABI+12-Month+Old+Physical+Data

- Advantages of Advanced Features
 - Increased size and mass from the 9 month old to a 12 month old will provide a higher level of safety for transitional size occupants.
 - Increased instrumentation capability
 - Head, Chest and Pelvis Accelerations
 - Neck loads, Spine loads, Shoulder Loads and Pubic loads
 - Not all instrumentation is used for CRS evaluation, some are only used for Out-Of-Position Scenario (OOPS) airbag testing
 - The CRABI has increased biofidelity (human like traits) which leads to better prediction of injury.

– CRS Evaluation Criteria Produced

- Aft Facing Requirements
 - Maximum value for HIC36 is not to exceed 1000.
 - Angle between the CRS back support surface and vertical shall not exceed 70°.
 - ATD torso shall be retained within the CRS, the Head CG shall not pass the forward-most and top-most points on the CRS surfaces.

- CRS Evaluation Criteria
 Produced (cont)
 - Forward Facing Requirements
 - Maximum value for HIC36 is not to exceed 1000.
 - Chest acceleration shall not exceed 60g's, except during a cumulative 3 millisecond interval.
 - ATD head shall not pass through a vertical transverse plane 813 mm forward of the seat back pivot axis on the standard seat fixture.
 - ATD knee pivot shall not pass through a vertical transverse plane 915 mm forward of the seat back pivot axis on the standard seat fixture.

Forward facing only

- Construction
 - Similar design features and construction as the Hybrid-III dummy family
 - The dummy was designed to be used while properly restrained in a CRS as well as out of position so the pelvis is made to reflect various postures.

http://www.nhtsa.gov/Research/HYBRID+III+3-Year+Old+Physical+Data#features

- Advantages of Advanced Features
 - Internal structure is more human-like in areas that interact with restraint systems.
 - Increased instrumentation. Has the potential for up to 50 channels to be measured.
 - Not all instrumentation is used for CRS evaluation, some are only used for OOPS airbag testing.
 - The Hybrid III also has increased biofidelity which leads to better prediction of injury.
 - Crucial components such as the head, neck and thorax were designed to meet specific biofidelity corridors.

– CRS Evaluation Criteria Produced

- Maximum value for HIC36 is not to exceed 1000.
- Chest acceleration shall not exceed 60g's, except during a cumulative 3 millisecond interval.
- ATD head shall not pass through a vertical transverse plane 813 mm forward of the seat back pivot axis on the standard seat fixture.
- ATD knee pivot shall not pass through a vertical transverse plane 915 mm forward of the seat back pivot axis on the standard seat fixture.

Test Dummy Selection for Minimum Performance Standards

- FMVSS-213 and TSO-C100b Child Restraint Systems are substantially similar in construction.
 - Protective shell construction
 - Integral restraint system
 - Forward and aft-facing configurations
- Therefore the improved injury assessment capabilities provided by the CRABI 12-month-old and Hybrid III 3-year-old should provide the same safety benefits for the aviation tests as automotive tests.

Innovative Aviation Unique Child Restraint Systems

- CAMI is planning to conduct research to develop a Minimum Performance Standard suitable for evaluation of innovative Aviation Child Safety Devices (ACSD)
- These devices may load the occupant differently than when seated in a conventional rigid shell type CRS.
- ATDs are needed that can assess the injury risks associated with these unique loading conditions.

Upper Torso Harnesses

- Upper torso harnesses utilize the existing aircraft lap belt which may not have optimum geometry for restraint of the smallest occupants.
- An ATD that interacts with the belt system in a biofidelic manner is needed to thoroughly assess the safety of these types of systems.

AmSafe CAReS

Pre-Inflated Restraints

- Systems that restrain the child with a forward supporting surface may produce significant chest and abdominal loading.
- An ATD that interacts with the support surface in a biofidelic manner and can measure injury criteria associated with that interaction is needed.

Luftikid

Large Forward Facing Restraints

- Some systems may be able to offer improved safety for occupants larger than currently addressed by TSO-C100b.
- A larger ATD than is currently specified in the aviation standards is needed to provide the appropriate loading condition.

Innovint SkyKids CRS

Test Dummy Selection for Research

- Candidate ATD's for measuring safety of the unique loading cases.
 - TNO Q 1 year old
 - Hybrid-III 3-yr old
 - Hybrid-III 6-yr old

TNO Q series 1-year-old

- Offers a more biofidelic pelvis and clavicle geometry than the CRABI. Should provide a more human-like interaction with restraint systems.
- Chest deflection instrumentation will allow direct assessment of interactions with forward support surfaces.

Q1 and CRABI Pelvic Comparison

- Blue is CRABI pelvis
- Grey is the TNO Q series
 1-year-old ATD Pelvis

- Red is CRABI
- Grey is the TNO Q series
 1- year old

Q1 and CRABI Clavicle Comparison

Q1 Clavicle Assembly

CRABI Clavicle Assembly

- Iliac crest load cell will provide an indication of whether the lap belt is interacting properly with the pelvis.
- Superior torso biofidelity and chest deflection instrumentation will allow direct assessment of interactions with forward support surfaces.

Anterior Superior Iliac Spine (ASIS) Load Cells

Picture from the Hybrid III 3 year old PADI manual

- Cited in FMVSS-213 for evaluation of CRS that can accommodate occupants from 18 to 22.7 Kg. or greater than 1100 mm in stature.
- Has the same advanced biofidelity and instrumentation advantages as the 3-year-old size Hybrid-III.
- Defined in 49 CFR Part 572 subpart N.

Questions

TNO Q1

Hybrid III 3 year old

Hybrid III 6 year old

