Aviation Child Safety Device Performance Standards Review

Presented to: The Sixth Triennial International Aviation Fire and Cabin Safety Research Conference

By: Rick DeWeese

FAA Civil Aerospace Medical Institute

Federal Aviation Administration


Date: October 26, 2010

- Child Restraint Systems (CRS) meeting the auto safety standards (FMVSS-213) have been permitted on aircraft since 1985.
- Research revealed that forward facing CRS could provide poor performance when installed in some aircraft seat configurations.

Good interface with seat (belt anchor aft-ward)

Bad interface with seat (belt anchor forward)

- As a result, SAE AS5276/1 "Performance Standard for Child Restraint Systems in Transport Category Airplanes" was developed to ensure proper restraint of infants and small children in the aircraft environment.
- TSO C-100b was issued in 2002 which referenced this document as a Minimum Performance Standard.

• Prototypes were developed to meet draft aviation CRS requirements. Optimized design improved performance.

Implementation Challenges

- Development of CRS to meet aviation specifications has proven technically challenging. So far, no systems have been granted TSO approval.
- AS5276/1 requirements were based on FMVSS-213 and an aircraft seat configuration reflecting a near worst-case combination of parameters affecting CRS performance.

Implementation Challenges

- CRS manufacturers identified specific test requirements as hindering their ability to meet the specifications:
 - Belt Anchor Location. Most seat designs now have an anchor further aft than the location specified.
 - Seat Cushion Dimensions and Properties. Width and depth reflect average values, but the thickness and stiffness reflects the thickest and softest cushions in service.
 - Installation Method. Reflects an worst-case inservice installation scenario that could produce a loose fit of the CRS in the seat.

Seat Design Evolution

- New aircraft seat designs with a better CRS interface (further aft belt anchor point) have entered service and are gradually replacing the older seat designs.
- This means that AS5276/1 tests are based on aircraft seat geometry that may no longer be representative of the majority of seats currently in service.

Testing Technology Advances

- A major revision to FMVSS-213 was adopted in 2005.
 - Test fixtures revised to reflect current automotive seat geometry and the new LATCH anchorage systems.
 - Improved test dummies and test methods increased the level of safety provided.

Rule Changes

- Aviation regulations were revised to accommodate certification of innovative CRS optimized for aviation use.
- These revisions removed the requirement that TSO-C100 CRS and other Aviation Child Safety Devices (ACSD) also have FMVSS-213 approval.
- This action may have removed some useful requirements since AS5276/1 had been developed to complement rather than replace FMVSS-213.

Addressing Challenges and Changes

- FMVSS-213 was reviewed to:
 - Identify requirements that are applicable to CRS intended for aviation use that are not currently addressed in the aviation standards.
 - Identify requirements that offer an improvement over similar requirements currently cited in the aviation standards.
- AS 5276/1 test requirements were reviewed to determine if they are still appropriate considering current seating configurations.

FMVSS-213 Review

- Potential Additions to Aviation Standards

- Design specifications for occupant support surfaces
- Belt and buckle strength and durability
- Defined restraint configuration, geometry and adjustment range

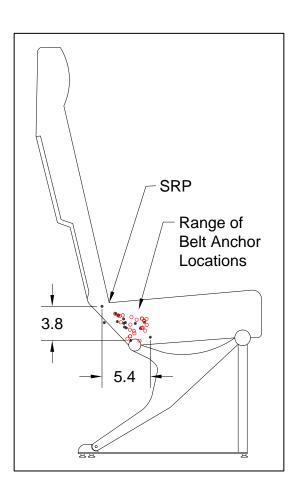
FMVSS-213 Review

- Potential Improvements to Aviation Standards
- Advanced Test Dummies

CRABI 12-month-old

Hybrid-III 3-year-old

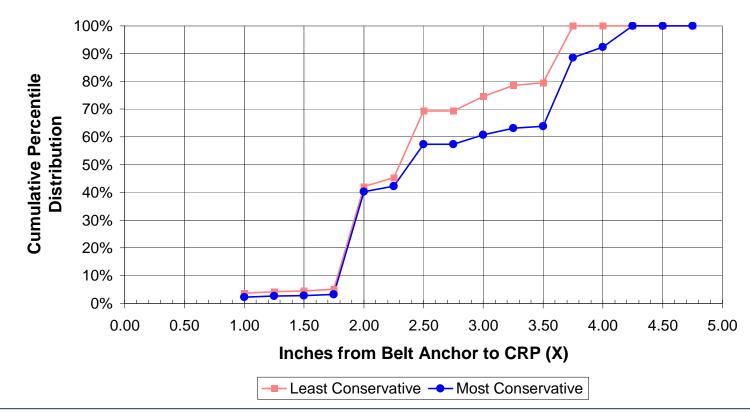
- Test Dummy preparation and positioning procedures
 - Dummy specific rather than generic



FMVSS-213 Review

- Potential Improvements to Aviation Standards
- Head injury assessment procedure
 - HIC36 evaluates injury potential due to both contact and non-contact (inertial) head acceleration.
- CRS installation procedures
 - Provides a repeatable installation method since it requires a specific lap belt tension (15 lb.).

- Belt anchor location is a major factor affecting CRS performance.
 - head excursion increases as the belt anchor is moved further forward.
- Original selection based on 1996 survey of transport fleet.



- Estimates of anchor point distribution in the current fleet were made by combining:
 - Fleet size and makeup from the FAA's Safety Performance Analysis System
 - Seating requirements defined in each aircraft's Type Data Sheet
 - Defined belt geometry (16 G seats have a belt anchor located no more than 2 inches forward of the CRP)
 - The 1996 survey results (primarily 9 G seats)
 - Assumptions about belt anchor locations on seats in aircraft that were retired / replaced since 1996

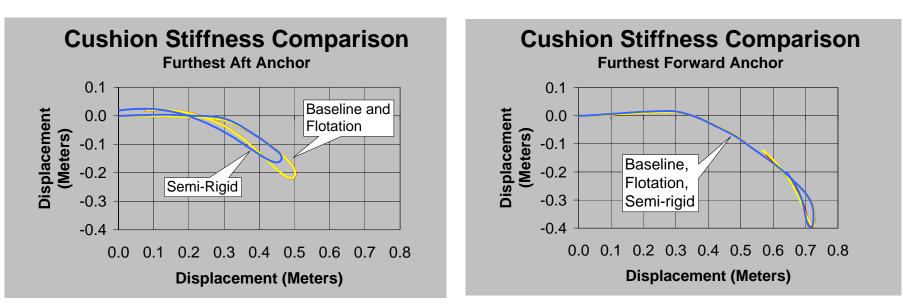
CRP-to-Lap Belt Anchor Horizontal Distance Cumulative Percentile Distribution Comparison of Most and Least Conservative Estimates

- Both estimation methods are conservative due to:
 - 16 G compatible seats may have been installed on many aircraft delivered after 1992 or installed on older aircraft during refurbishments.
 - The continued retirement and refurbishment of older aircraft, plus the requirement to install 16 G seats on all newly built aircraft, will tend to move the typical anchor location further aft over time.

 Analysis results indicate that a belt anchor location 3.7 inches forward of the CRP is the most appropriate location for a minimum performance standard test procedure.

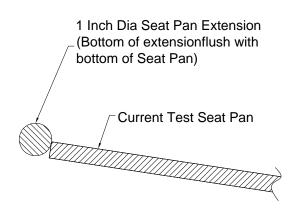
Lap Belt Anchor X Location Estimated Distribution	50%tile Location	75%tile Location	95%tile Location
Original Analysis	3.6	3.7	4.2
Most Conservative Analysis	2.4	3.6	4.1
Least Conservative Analysis	2.3	3.0	3.7

- Size and Stiffness bounded by conflicting design goals of accommodating a range of occupant sizes while being compact.
- Review of new economy class seats indicated that current seat cushions are still similar to AS5276/1 specifications.



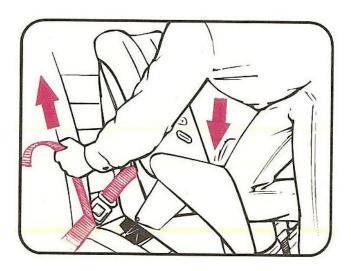
• Seat Cushion Parameter Comparison

Bottom Cushion Parameter	AS 5276 Specifications	Review Results
Top Surface Angle	5.5 Degrees	4.5 -7.5 Degrees
Cushion Depth	16.2 Inches	17 – 18 Inches
Support Structure Depth	14.8 Inches	15 – 16 Inches
Thickness above forward support	3.5 Inches polyurethane + 0.5 Inches polyethylene	3 – 4.75 Inches
Foam/Cushion Stiffness	21-27 ILD for the polyurethane layer	44 – 81 IFD


 Computer modeling results indicate that cushion stiffness has little affect on CRS performance.

- Seat Pan specified in test procedures is somewhat shorter than typical.
- A one inch diameter cylindrical extension to pan would improve realism.

AS5276/1 Review – Installation Method


- Current AS 5276 method can result in widely varying pre-test lap belt tension due to variations in belt adjuster friction
- FMVSS-213 method produces consistent pretest tension values since tension is measured directly.

AS5276/1 Review – Installation Method

• Following CRS manufacturer's instructions will likely result in tension values similar to the FMVSS-213 test specifications.

Conclusions

- Incorporating applicable FMVSS-213 requirements into the aviation standards should provide a safety benefits for ACSD.
- Utilizing applicable automotive requirements would also allow ACSD users to benefit from the extensive research that went into the development of those requirements.

Conclusions

 Revising test requirements to be more representative of the current aircraft environment should advance the development of ACSD while maintaining or improving the current level of safety.

Acknowledgment

Co-authors:

David Moorcroft Amanda Taylor

Civil Aerospace Medical Institute Federal Aviation Administration

Compilation of Fleet Statistics from the Safety Performance Analysis System

John Petrakis FAA Headquarters

Reference

A report containing the details of this project will be published as an Office of Aviation Medicine Report available at: www.faa.gov

DeWeese R, Moorcroft D, Taylor, M."*Aviation Child Safety Device Performance Standards Review*", Washington DC: Department of Transportation /Federal Aviation Administration; In Press

