K.S. Raju, T. Siddiqui Dept. Aerospace Engineering Wichita State University Wichita, KS

A. Abramowitz RPD Manager 502 Crashworthiness FAA William J. Hughes Technical Center Atlantic City, NJ

# Effects of Geometric Scaling on the Strain Rate Sensitivity of Composite Materials

The Sixth Triennial International Fire & Cabin Safety Research Conference, Atlantic City, NJ Oct. 2010



WICHITA STATE UNIVERSITY



# **Motivation & Key Issues**



Hull D (1991) Comp. Sci Tech, 40.

Bannerman & Kindervater (1984) in Structural Impact and Crashworthiness Bolukbasi & Laananen (1995) Composites, 26.

Carruthers, Kettle & Robinson (1998) Appl Mech Rev, 51.

- Crashworthiness requirements
  - maintain survivable volume
  - dissipate kinetic energy → alleviate occupant loads
- Energy absorption
  - Composite structures /energy absorption (EA) devices
    - Controlled failure modes
    - Maximize damage volume
    - Provision for sustained stability
  - Influencing factors
    - EA device geometry
    - Material
    - Rate sensitivity (?)





# FAA sponsored research..

- Material property characterization at different strain rates (10<sup>-4</sup> s<sup>-1</sup> to 10<sup>3</sup> s<sup>-1</sup>)
  - Phase-1 : Tension, Compression & Shear
  - Phase-2 : Open Hole Tension, Interlaminar Shear, Pin Bearing
  - Phase-3 : Fracture Toughness (mode I & II)
  - Phase-4 : Characterization of EA device, Scaling effect; Dynamic characterization of CMH-17 material(in progress)
- Material Systems
  - Newport NB321/3k70 Plain Weave Carbon Fabric (PWCF)
  - Newport NB321/7781 Fiberglass
  - Toray T800S/3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape
  - Toray T700G-12K-50C/3900-2 Plain Weave Carbon Fabric (PWCF)





# **Some Observations..**

- In-plane properties
- Delamination toughness
- Crushing behavior





# **Scaling Issues..**

#### Specimen size

- Reduced specimen size to maximize strain rates
- Reduced specimens size to minimize failure loads to within testing machine capability



#### **Geometric Scaling..**



WICHITA STATE

UNIVERSITY

Wisnom (1998), Comp. Sc. Tech. Vol.59

# **Geometric Scaling..**



University

# Weibull model

$$\frac{\sigma}{\sigma_o} = \left(\frac{V}{V_o}\right)^{-\frac{1}{m}}$$

 $\sigma_o \sim \text{characteristic}(\text{reference}) \text{ strength}$   $V_o \sim \text{characteristic}(\text{reference}) \text{ Volume}$  $m \sim \text{Weibull modulus}$ 



#### <u>References:</u> Weibull (1951), J. App. Mech., Vol.18 Jackson,Kellas & Morton (1992), J. Comp. Mat. Vol.26 Wisnom (1999), Comp. Sc. Tech., Vol.59





# **Objectives**

- Investigate the geometric scaling effects on the tensile properties of composite materials at different strain rates
  - Are the scaling effects functions of strain rates?
  - Quantify effects in terms of Weibull modulus 'm'



# **Scaling Experiments**

- Material Systems
  - Newport NB321/7781 fiberglass
  - Toray T800/3900-2B Unitape
- Scaling type
  - Fabrics : 2D (planar) scaling
  - Unitape : 1D (length) scaling
    - Reduced loading capability

| MATERIAL                                            | STACKING<br>SEQUENCE                       | SCALE $\lambda$ | L (mm) | W (mm) |
|-----------------------------------------------------|--------------------------------------------|-----------------|--------|--------|
| NB321/7781 fiberglass,<br>T700G-12K-50C/3900-2 PWCF | [0] <sub>4</sub><br>[+45/-45] <sub>S</sub> | 1/4*            | 50.8   | 12.7   |
|                                                     |                                            | 1/2             | 101.6  | 25.4   |
|                                                     |                                            | 1               | 203.2  | 50.8   |
| Toray T800S/3900-2B unitape                         | [0]4                                       | 1/4*            | 50.8   | 12.7   |
|                                                     |                                            | 1/2             | 101.6  | 12.7   |
|                                                     |                                            | 1               | 203.2  | 12.7   |
|                                                     | [+45/-45] <sub>8</sub>                     | 1/4*            | 50.8   | 12.7   |
|                                                     |                                            | 1/2             | 101.6  | 25.4   |
|                                                     |                                            | 1               | 203.2  | 50.8   |



CHITA STATE



### **Tension Test Apparatus...**



### **Tension Test...Instrumentation**

#### Load Frames

- MTS electromechanical (slow rate)
- MTS high rate (~ 0.5 in/s to 500in/s)

#### Load measurement

- Slow speed tests ~Strain gage based load cell (5 kip capacity)
- Dynamic Tests ~Piezoelectric load cell
  - -PCB Piezotronics model 206C
  - 10kip capacity
  - ~40kHz upper frequency limit

#### Strain measurement

- Strain gage CEA-06-250UW-120
- Vishay 2210 signal conditioner
  - Excitation voltage : 1V
  - DC to 50kHz (-0.5dB max)





# **Test Results**

- Sensitivity to strain rate observed at all volumes
- Scaling effects consistent with literature
  - Reduction in strength with increase in volume
  - No significant change in modulus
- Range of volumes investigated to date is limited. Larger volumes being investigated at presen





# Failure modes..

| Strain Rate (1/s) | [0] <sub>4</sub> specimens | [+45/-45] <sub>s</sub> Specimens |
|-------------------|----------------------------|----------------------------------|
| 0.0002            |                            |                                  |
| 0.002             |                            |                                  |
| 0.5               |                            |                                  |



# **Test Results..Weibull Modulus**

- Based on Weibull modulus, the scaling effects tend to diminish with increasing strain rates
  - Increase in 'm' dependent on material system and stacking sequence





# **Strain Rate & Scaling effects..**



Batdorf, S.B., J. Reinf. Plastics & Composites, Vol.1, pp.153-164 Batdorf, S.B., J. Reinf. Plastics & Composites, Vol.1, pp.165-176



# Summary

- Rate sensitivity & geometric scaling (2D) effects on tensile properties of two material systems has been investigated experimentally
  - Rate sensitivity observed at all specimen volumes
    - Behavior attributed to rate sensitivity of matrix
  - Scaling effects tend to diminish with increasing strain rate
    - Limited volumes studied to date
    - Source of rate sensitivity on scaling should be investigated further
- Use of small coupons for dynamic testing may be acceptable (provided scaling is verified)
- Other loading modes (compression, shear) should be studied.

