SAE ARP 5765: Analytical Methods for Aircraft Seat Design and Evaluation

Presented to: IAFCSRC By: David Moorcroft Date: 26 October 2010

Federal Aviation Administration

Background

- AC 20-146: Methodology for Dynamic Seat Certification by Analysis for Use in Parts 23, 25, 27, and 29 Airplanes and Rotorcraft
 - Signed in May 2003; allows simulation results to be used in support of seat certification
 - Provides high-level guidance on the validation of seat models
 - Defines the conditions under which computer modeling can be used in support of certification

SAE SEAT Committee

- Industry group that defines industry best practices (includes FAA & Academia)
 - Aviation Standard (AS)
 - Aviation Recommended Practice (ARP)
 - Aviation Information Reports (AIR)
- SAE ARP 5765: Analytical Methods for Aircraft Seat Design and Evaluation
 - Being developed by a working group within the SEAT committee
 - Started in 2007

ARP 5765: Goal

Provide a quantitative method to measure and evaluate the degree of correlation between a model and a physical test, and to provide best modeling practices to improve the accuracy and predictability of seat analyses

SAE ARP 5765 Outline

v-ATD Calibration

- Establish v-ATD performance criteria

Seat System Verification and Validation

- How to evaluate the accuracy of seat models

Seat Modeling Best Practice Guide

- Testing
- Modeling

Appendices

- Test-Simulation Comparison Methodology
- Dataset for Hybrid II
- Dataset for FAA-Hybrid III

v-ATD Calibration (95% complete)

- Industry lacked multiple v-ATDs that produced accurate results in aviation-specific scenarios.
- Goal: define the process for ensuring that v-ATDs match the anthropometry and kinematic performance of a physical ATD for aviationspecific applications
 - Component Response (head, chest, knee, etc.)
 - Pelvic Shape Evaluation (cushion interaction)
 - Dynamic Response
 - Forward Facing (FF) 2pt, FF 3pt, FF 4pt, Download
 - Appendices B & C: NIAR Test Information

Dynamic Response

- Original component tests specified considering an automotive interior
- Need to evaluate the ATD performance for conditions likely in aircraft seat tests
 - 1. FF 2pt belt: extreme flail envelope
 - 2. FF 3pt belt: torso twist
 - 3. FF 4pt belt: submarining
 - 4. Download: vertical crash vector

Channel Description	Forward Facing 2-Point Belt	Forward Facing 60 Deg 2-Point Belt	Forward Facing 3-Point Belt	Forward Facing 4-Point Belt
Sled Ax	Х	Х	Х	Х
Upper Neck Fx *			Х	X
Upper Neck Fy *			Х	
Upper Neck Fz *			Х	X
Upper Neck Mx *			Х	
Upper Neck My *			Х	Х
Chest Ax (CFC 180)			Х	Х
Lumbar Fz		Х		
Lumbar My		Х		
Right Lap Belt Load	X		Х	X
Left Lap Belt Load	X		Х	X
Right Shoulder Belt Load				X
Left Shoulder Belt Load			Х	Х
Seat Pan Fx	Х	Х	Х	Х
Seat Pan Fz	Х	Х	Х	Х
Seat Pan My	Х	Х	Х	Х
Head CG X Position	Х	Х	Х	Х
Head CG Z Position	Х	Х	Х	Х
H-point X Position	Х		Х	Х
H-point Z Position	Х	Х		
Knee X Position	Х			Х
Knee Z Position	Х			Х
Ankle X Position	Х			
Ankle Z Position	Х			
Shoulder X Position			Х	X
Shoulder Z Position			Х	X
Opposite Shoulder X Position			Х	
Opposite Shoulder Z Position			Х	
Head Angle	X			X
Pelvis Angle	X	X		X

* FAA-Hybrid III only

Comparison of Test-Sim Curves [Appendix A]

• Input:

- Consistent units
- Appropriate sampling rates
 - 10 kHz for electronic instrumentation
 - 1 kHz for photometric
- Equal time lengths.
- Duration: onset of the test pulse through significant system response, often dummy motion, as seen in the physical test.

Comparison of Test-Sim Curves

Electronic Data [Forces, Moments, Accelerations]

• Error on the Peak

$$Error = \frac{\left|Peak_{Test} - Peak_{Sim}\right|}{\left|Peak_{Test}\right|} * 100\%$$

• Shape Error - Sprague and Geers Comprehensive Error

* Sprague MA and Geers TL. A Spectral-Element Method for Modeling Cavitation in Transient Fluid-Structure Interaction. International Journal for Numerical Methods in Engineering. 60 (15), 2467-2499. 2004.

Comparison of Test-Sim Curves

Motion Data [Position, Angle]

- Coordinate Transformation
- Error on the Peak*

$$Error = |Peak_{Test} - Peak_{Sim}|$$

• Shape Error - Sprague and Geers Comprehensive Error

* Sprague MA and Geers TL. A Spectral-Element Method for Modeling Cavitation in Transient Fluid-Structure Interaction. International Journal for Numerical Methods in Engineering. 60 (15), 2467-2499. 2004.

Comparison of Test-Sim Curves

Motion Data [Position, Angle]

Coordinate Transformation

Example Data: Lap Belt Load

FF 3-pt Belt, 21g, Right Lap Belt Load

Example Data: Lap Belt Load

FF 3-pt Belt, 21g, Right Lap Belt Load

Example Data: Pelvic X Motion

FF 2-pt Belt, 16g, Pelvic Position

Example Data: Pelvic X Motion - Offset

FF 2-pt Belt, 16g, Pelvic Position

Example Data: Pelvic X Motion - Offset

FF 2-pt Belt, 16g, Pelvic Position

Best Practices: Modeling (60% complete)

- Information needed to build aircraft specific models
 - Global Parameters
 - Physical Discretization
 - Material Definition (metals, foam, plastic)
 - Contact Definition
 - Load Application
 - Initial Conditions (ATD positioning, pitch and roll)
 - Output Control

Challenges in Finite Element Simulation

- Determining the proper degree of fidelity required in the model
 - Fittings/Joints
 - Interface between seats and aircraft attachment
 - Restraints
- Cushion Models
- Floor Deformation
- Permanent Deformation
- Material Characterization
- Failure Criteria

Simulated Pitch and Roll

Video courtesy of NIAR

SAE ARP 5765: Analytical Methods for Aircraft Seat Design and Evaluation

Load Application – Sled Pulse

- R&D use Factor of Safety
- Validation match physical test
- Certification ideal pulse or typical pulse for your facility

Load Application – Sled Pulse

							Calculated		
Part	Seat	Orient	Vel	G's	RT	2*RT	1⁄2 ∆⊽	$\nabla \nabla$	
			ft/s		ms	ms	ft/s	ft/s	
23	Crew	Horz	42	26	50	100	20.93	41.86	
23	Crew	Vert	31	19	50	100	15.30	<i>30.59</i>	
23	Pass	Horz	42	21	60	120	20.29	40.57	
23	Pass	Vert	31	15	60	120	14.49	28.98	
25	All	Horz	44	16	90	180	23.18	46.37	
25	All	Vert	35	14	80	160	18.03	36.06	
27/29	All	Horz	42	18.4	71	142	21.03	42.06	
27/29	All	Vert	30	30	31	62	14.97	29.94	

* Italic/Red: Calculated Velocity < Required Velocity

Best Practices: Testing (95% complete)

- Provide guidance for things to consider during test setup so that the necessary information is collected to support modeling
- Modifications to typical test protocols to collect quality data for modeling
 - Consistent ATD positioning
 - Joint locations, pelvic angle
 - Belt information (material props, lengths, pre-tension)
 - Tips for photometric analysis
 - H-pt
 - Knee

System Validation (10% complete)

• Ensure that the system (v-ATD, restraints, seat, etc.) behaves in a predictable manner

Verification

- Code
- Calculation

Validation

- Materials
- Component Test
- Sensitivity Analysis

Documentation

Future Work

- v-ATD Calibration: finalize limits, evaluate current v-ATDs
- System Validation: refine and evaluate process
- Best Practices: develop and refine content
- ES-2?

Contact Information

- Terence Lim working group leader
 - Terence.Lim@airbus.com
- www.sae.org/servlets/works/committeeHom e.do?comtID=TEASEAT

