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• Introduce the overall program objectives

• Highlight relevant aircraft system information

• Provide brief overview of experimental setup

• Discuss Fourier Transform Infrared Spectroscopy (FTIR)

• Report initial commercial CO2 sensor data

• Conclude with recommendations & proposed future work
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• Identify commercial sensors that have potential for 
aircraft cabin air quality sensing for multiple gases

• Determine reliability and operation characteristics 
of commercial sensors in different pressure and 
background gas operating environments

• Investigate current sensor technologies to 
determine areas where improvements can be 
made
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Overall Program Objectives



Aircraft System Overview
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Environmental Control 
Systems

• Bleed Air System

• Mix Manifold System

• Recirculation System

• Cabin Ventilation 
System

Ref. 1,2,3
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Bleed Air System
Ref. 1

• Totally automatic system, except for an emergency shutoff 
available to pilots

• Outside air entering the airplane is compressed to 220 kPa 
(2.2 atm) and rises to a temperature near 160 °C (320 °F)

• Number of valves and heat exchanger provides air at proper 
temperature and pressure to numerous flight system
• Air conditioning packs
• Cabin ventilation and pressure system
• Potable water pressurization
• Wing and engine anti-ice protection
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Mix Manifold System

• Air entering cooled by 
air conditioning system 
and decompressed
• Temperature = 15 °C 

(59 °F)
• Relative Humidity = 5% 
• Pressure = 82 - 78 kPa 

(6,000-7,000 ft altitude)
(0.81-0.77 atm)

• CO2 / CO unchanged 
from outside

Ref. 1
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Recirculation System

• Re-circulated air is 
essentially sterile

• HEPA filters remove 99.9+% 
of bacteria and viruses 
produced by passengers
• Filters similar to those used in 

critical wards of hospitals
• Harmful gases are NOT 

removed by filters

• Attempted control of gases to 
low levels in the cabin 
through dilution with high 
quantities of outside air

Ref. 1,3,6
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Cabin Ventilation System

• Air flow is directed from 
below floor to overhead 
cabin
• Temperature = 18-30 °C 

(64-86 °F) 
• Relative Humidity = 10-20%

• Provides approximately 1.9 
L/s of oxygen
• Human at rest consumes 

0.007 L/s

• No sensors or monitoring of 
potentially harmful gases
• Assumed below harmful 

levels through dilution

Ref. 1,7



www.acer-coe.org

Experimental Setup
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Experimental Setup – Control 
Module

Test & Inert Gas Flow Meters

Altitude Readouts

Controls system 
settings for pressure 
and gas environment

inHg Vac 
&

ft above sea level
Gas lines rated for pressures up to 

12,000 feet (50.5 kPa, 0.5 atm)
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• 7 CO2 Sensors
• 4 Temperature Sensors
• 2 Relative Humidity 
Sensors

Experimental Setup –
Commercial Sensor Module



www.acer-coe.org

Experimental Setup – FTIR 
Module

• Variable path length gas 
chamber cell
• Model M-5-22-V

• Optical path folded in a 
volume of 8.5 L

• Cell path length = # of 
passes * length of base 
path
• Length of base path = 56 cm
• Min # of passes = 4
• Min cell path length = 2.24 m

Perkin Elmer FTIR System: 
Spectrum GX 



FTIR Analysis
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• Airplane cabin pressure is 
approximately that of air 
pressure at 6,000 to 
8,000 feet above sea 
level
• ~ 81-75% of sea level 

pressure

Pressure [kPa] = 101.325 * (1-2.25577*10-5 * altitude in meters)5.2558

http://www.engineeringtoolbox.com/air-altitude-pressure-d_462.html

FTIR – Pressure Effects
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FTIR – Pressure Effect 
cont.

As P Absorption

Ref. 10

Temperature range of 20 °C 



Ideal partial pressure sensor at 7,000 ft would read 2977 [ppm] for 5000 [ppm] STP
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FTIR – Pressure Effect cont.
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FTIR Analysis

Number of Scans = 1
Range = 4000 – 600 cm-1
Resolution = 0.5 cm-1
Interval = 0.1 cm-1
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FTIR Analysis

Number of Scans = 1
Range = 4000 – 600 cm-1
Resolution = 0.5 cm-1
Interval = 0.1 cm-1

(0.67 atm)



CO2 Commercial Sensor 
Initial Testing Results

•K-22 LO Sensor
•Siemens QPA2000
•Airtest EE80
•Airtest TR9294
•Johnson Controls CD-WAO
•SenseAir aSense mIII

www.acer-coe.org



• CO2 has several absorption 
bands with the 4.26 μm 
(2349 cm-1) band being the 
most widely used
• Wavelength provides the 

least interference by other 
common components in air

• Typical systems utilize 2-
step drying system to 
remove water vapor in 
sample air

• Degradation of IR light 
source over time

www.acer-coe.org

NDIR CO2 Sensor – General 
Operation

Ref. 15



• NDIR CO2 Sensor
• Automatic Baseline 

Correction (ABC) of 
~400 ppm as set point

• Range: 0 – 2,000 ppm
• Accuracy: ± 75 ppm ±

5% of measured value

• Single IR lamp source 
with monitoring of a 
single wavelength

www.acer-coe.org

(A1,A2) K-22 LO Sensor



• NDIR CO2 Sensor
• Range: 0 – 2,000 ppm
• Accuracy: ± 50 ppm ±

2% of measured value
• Temp Dependence: 2 

ppm/°C

• Dual IR lamp source 
with monitoring of a 
single wavelength

www.acer-coe.org

(A3) Siemens QPA2000



• NDIR CO2 Sensor
• Range: 0 – 2,000 ppm
• Accuracy: ± 50 ppm ±

2% of measured value
• Temp Dependence: 5 

ppm/°C

• Dual IR lamp source 
with monitoring of a 
single wavelength

• Auto-calibration 
procedure 
compensates for aging 
of the IR source

www.acer-coe.org

(A4) AirTest EE80



• NDIR CO2 Sensor
• Automatic Baseline 

Correction (ABC)
• Range: 0 – 2,000 ppm
• Accuracy: ± 20 ppm ±

3% of measured value

• Single IR lamp source 
with monitoring of a 
single wavelength

• Use of “oval sensor 
element” to create longer 
path-length to measure 
CO2
• Increased IR path-length 

allows higher signal-to-
noise ratio

www.acer-coe.org

(A5) AirTest TR9294



• NDIR CO2 Sensor
• Range: 0 – 2,000 ppm
• Accuracy: ± 30 ppm ±

2% of measured value

• IR lamp source with 
monitoring of a dual 
wavelengths
• Tunable filter allows 

for measurement at 
two wavelengths

• Auto-calibration 
procedure 
compensates for aging 
of the IR source

www.acer-coe.org

(A6) Johnson Controls CD-
WAO



• NDIR CO2 Sensor
• Automatic Baseline 

Correction (ABC)
• Range: 0 – 2,000 ppm
• Accuracy: ± 20 ppm ±

5% of measured value

• Single IR lamp source 
with monitoring of a 
single wavelength

www.acer-coe.org

(A7) SenseAir aSense mIII 
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Commercial CO2 Performance

Test Date: 8-23-2010
Start Time: 11:15 AM
End Time: 3:05 PM
Flow Rates: 1.0 sccm CO2; 499.0 sccm N2
Altitude (Pressure): 10,780 ft (67.5 kPa, 0.67 atm)
Expected Final CO2 Concentration: 1332 [ppm] 

Time is from introduction of CO2 gas
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Commercial CO2 Performance

Test Date: 8-27-2010
Start Time: 8:35 AM
End Time: 12:30 PM
Flow Rates: 1.5 sccm CO2; 498.5 sccm N2
Altitude (Pressure): 10,780 ft (67.5 kPa, 0.67 atm)
Expected Final CO2 Concentration: 1997 [ppm] 

Stopped CO2 Flow

Time is from introduction of CO2 gas



• Sensor drift due to automatic baseline 
correction (ABC) algorithms
• Algorithms typically use a set time period to 

calculate the baseline reference value

• ABC algorithms used to compensate for 
difficult to decouple effects of IR sensing 
technology
• Long-term degradation in IR lamp source(s)
• Collection of dust & water vapor condensation on 

IR beam window

www.acer-coe.org

Commercial CO2
Performance cont.



• As-is commercial CO2 sensors may need to be 
modified to overcome the issues associated with the 
automatic baseline correction algorithms

• Long-term ABC algorithms may not be appropriate for 
sensor operation in an aircraft cabin environment
• Sensors that monitor a known reference sample and 

quickly reset their baseline value may be more applicable

• Sensors without baseline correction that are replaced 
at regular intervals to reduce the effects of IR source 
aging may be an alternative

www.acer-coe.org

Recommendations



• Additional testing with CO2 sensors to determine exact 
effects of automatic baseline correction (ABC)

• Attempt to bypass ABC within commercial sensors to 
directly test the IR sensor performance

• Explore other CO2 sensing technologies as potential 
replacement for IR based devices

• Perform similar testing on commercial CO and O3
sensors

www.acer-coe.org

Future Work



• Experimental setup allows for accurate reproduction of aircraft 
cabin pressure environment to study commercial sensors

• FTIR module allows for accurate determination of gas 
concentration for use as standard comparison for all 
commercial sensors

• Commercial CO2 sensors produced for building environments 
may need modifications to accurately work in an aircraft cabin

• Multiple approaches within CO2 IR sensor technology 
experience similar operational issues when studied in an 
aircraft cabin environment

www.acer-coe.org

Conclusions
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Additional Information
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FTIR Analysis Background
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• Energy of molecule 
comprised of three additive 
components
• Rotation of molecule as 

whole (1 cm-1 to 102 cm-1)
• Vibration of constituent 

atoms (102 cm-1 to 104 cm-1)
• Motion of electrons (104 cm-1

to 105 cm-1)

• IR absorption originates in 
photons that are absorbed 
by transitions between two 
vibrational levels

Electronic excited state

Electronic ground state

Rotational 
transition

Vibrational 
transition

Electronic 
transition

FTIR – Principles of 
Operation

Ref. 8,9



• All polyatomic molecules and hetero-nuclear diatomic 
molecules absorb IR radiation

• Pattern of absorption determined by physical properties of 
molecule
• Number of atoms, bond angles, bond strengths

• Interpretation of spectra involves correlation of absorption 
bands of an unknown gas with known absorption frequencies 
for bond types

• Each spectrum differs from all others and is considered a 
molecular signature

www.acer-coe.org

FTIR – Principles of 
Operation cont.
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Experimental Setup – FTIR 
Module

Gas Inlet



• Current QASoft database covers 386 gases
• Compounds that have a vapor pressure 1 atm at room 

temperature (standard conditions)

• IR spectra of database covers 3700 cm-1 to 500 cm-1
• Fundamental IR region where rotation and vibrations of 

molecules give rise to IR absorption

• Strongest spectral features most often used in measurements
• Regions where absorbance is proportional to concentration-path 

length product

• Intensity of absorption depends on total number of molecules 
present in path of radiation

www.acer-coe.org

FTIR – Principles of 
Operation cont.
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IR Spectrum of CO2

• 3 distinct modes of vibration

• Symmetrical motion of O 
atoms, C atom fixed 

� ω1 = 7.5 μ (k1 = 1337 cm-1)
• Inactive in IR (lack of dipole 

moment)

• C oscillates perpendicular to O 
atoms, β(OCO)

� ω2 = 15 μ (k2 = 667 cm-1)

• Asymmetrical vibration , C 
moves relative to center of 
mass of O atoms 

� ω3 = 4.3 μ (k3 = 2349 cm-1)

OO C

OO C

k1 = 1340 cm-1

OO C

k2 = 667 cm-1

k3 = 2350 cm-1

Ref. 8



• Theoretical: k2 = 667 cm-1

• Database: k2 = 667.2 cm-1

• Absorbance = 0.63

• Theoretical: k3 = 2349 cm-1

• Database: k3 = 2339.9 cm-1

• Absorbance = 0.31
• Database: k3 = 2364.3 cm-1

• Absorbance = 0.37

• Absorbance scale adjusted 
to 100 ppm-meters From QASoft Database

www.acer-coe.org

IR Spectrum of CO2



Vacuum Chamber 
Temperature Monitoring 
During Sensor Testing
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Temperature Monitoring

Increase of ~2.5°C corresponds to max of 12.5 [ppm] CO2 drift due to temp

Test Date: 8-23-2010
Start Time: 11:15 AM
End Time: 3:05 PM
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Temperature Monitoring
Test Date: 8-27-2010
Start Time: 8:35 AM
End Time: 12:30 PM



Vacuum Chamber 
Relative Humidity Monitoring During 

Sensor Testing

www.acer-coe.org
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Relative Humidity Monitoring
Test Date: 8-23-2010
Start Time: 11:15 AM
End Time: 3:05 PM



www.acer-coe.org

Relative Humidity Monitoring
Test Date: 8-27-2010
Start Time: 8:35 AM
End Time: 12:30 PM



CO2 Commercial Sensor 
Previous Results

•SenseLife CAM CO2 Meter
•Gray Wolf Multi-gas Sensor IQ-604

www.acer-coe.org Ref. 12



• NDIR CO2 Sensor
• Automatic background 

calibration
• Range: 0 – 9,999 ppm
• Accuracy: ± 75 ppm + 

5% of measured value

• Sensor automatically 
resets baseline value 
according to minimum 
CO2 concentration 
observed over a given 
time period

www.acer-coe.org

SenseLife CAM CO2 Meter



• NDIR CO2 Sensor
• Range: 0 – 10,000 ppm
• Accuracy: ± 50 ppm + 3% 

measured value

• Electrochemical CO Sensor
• Range: 0 – 500 ppm
• Accuracy: ± 2 ppm < 50 ppm

± 3% measured value > 50 
ppm

• PID O3 Sensor
• Range: 5 – 20,000 ppb
• Accuracy: Not provided

www.acer-coe.org

Gray Wolf Multi-gas Sensor 
IQ-604
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Sensor Comparison
Pre-mixed CO2/N2 Gas
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