FLIGHT ATTENDANT FATIGUE: CAMI FOLLOW-ON STUDIES AS DIRECTED BY CONGRESS

Thomas E. Nesthus, Ph.D.
FAA Civil Aerospace Medical Institute
Oklahoma City, OK
1.1 “…to better understand the impact of the minimum rest requirements of FAR 121.467 and FAR 135.273, the Committee recommends…a study of flight attendant fatigue…The study should [include]…the agency’s recommendations on potential regulatory revisions.”
2005 Study Approach

NASA Ames Research Center’s Fatigue Countermeasures Group conducted study with CAMI oversight and assistance

Approach:
1) Literature review on flight attendant (FA) fatigue
2) Query fatigue-related incident/accident data (Aviation Safety Reporting System and NTSB databases)
3) Evaluate current duty schedules and compare with the current regulations (various carriers)
4) Apply performance and fatigue models to scheduling data sample
2005 Study Recommendations

1. Survey of Field Operations

 To assess the frequency with which fatigue is experienced, the situations in which it appears, and the consequences that follow.

2. Field Research on the Effects of Fatigue

 To explore physiological and neuropsychological effects of fatigue, sleepiness, circadian factors, and rest schedules on flight attendants.

3. Validation of Models for Assessing FA Fatigue

 An important step to understanding whether and how models could be used in conjunction with field operations.
2005 Study Recommendations (cont)

4. Focused Study of Incident Reports
 To better understand details of the incidents

5. International Carrier Policies and Practices Review
 To learn how other countries address these issues and with what results

6. Training
 FAs could benefit from information on fatigue, its causes and consequences, its interaction with circadian disruption, and how and when to employ countermeasures (e.g., scheduled naps, physical activity, social interaction, caffeine)

Flight Attendant Fatigue, AM-07/21
FY-08 Omnibus Spending Bill

“...the Committee directs CAMI to [conduct] analysis in the six areas [including] a survey of field operations, a focused study of incident reports, field research on the effects of fatigue, a validation of models for assessing flight attendant fatigue, international policies and practices, and the potential benefits of training.”
National Survey of Flight Attendant Duty/Rest/Fatigue

KE Avers, TE Nesthus, SJ King, S Thomas, JO Banks

Civil Aerospace Medical Institute
Aerospace Human Factors Research Division
Survey Purpose

• Examine the frequency with which fatigue is occurring in cabin crew operations

• Examine the context in which fatigue occurs

• Examine the implications fatigue may have for cabin safety
Survey Development

- Reviewed relevant fatigue literature to identify factors influencing fatigue

- Developed survey using previously validated surveys of fatigue to maximize utility and minimize possibility of bias (e.g., Co, Gregory, Johnson, & Rosekind, 1999)

- Obtained feedback from fatigue experts, flight attendants, and airlines to ensure accuracy of questions and minimize possibility of bias
Survey Sample

- Surveys distributed to active flight attendants w/in FAA Civil Aviation Registry (n = 20,826 surveys distributed)

- Survey returns were voluntary and anonymous (n=10,550)
 - online = 4,571
 - paper = 5,979
 - Overall response rate = 51%

- Inclusion Criteria
 - Active flight attendant w/current airline for at least 1 month
 - Flown w/in previous bid period
 - Adjusted returns (n=9,180)
 - Adjusted response rate = 44%
Demographics

- **Gender:** Female = 79%, Male = 21%
- **Age:** 45.9 yrs
- **Height:** 5 ft 5 in
- **Weight:** 150 lbs
- **Geographical location:**

<table>
<thead>
<tr>
<th></th>
<th>Pacific</th>
<th>Mountain</th>
<th>Central</th>
<th>Eastern</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>16%</td>
<td>8%</td>
<td>26%</td>
<td>48%</td>
<td>2%</td>
</tr>
<tr>
<td>Assigned Domicile</td>
<td>15%</td>
<td>6%</td>
<td>24%</td>
<td>53%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Demographics

- Majority (73%) worked for one airline throughout their carrier
- Majority (82%) represented by a union at current airline
- Representative of seniority listing
 - Top one-third (41%)
 - Middle one-third (34%)
 - Bottom one-third (26%)
- Representative of types of operations
 - Low-cost (29%)
 - Regional (32%)
 - Network (39%)
Demographics

- The average bid period was 28 days (including flight time, duty time, time spent “deadheading”)
- Average time in each type of cabin service
 - Economy – 64%
 - Business – 8%
 - First Class – 13%
 - Premium – 1%
- Number of flight segments ranged from 0 to 7 in one day ($M = 2.8$)
- Majority (75%) flew flight segments 1 to 4 hrs in length
- Nearly half (47%) reported that none of their flights went outside the U.S.
Frequency of Fatigue

- More than half **(52%)** had “nodded off” while working
- Majority **(84%)** reported being fatigued in their previous bid period
- Of those,
 - **44%** identified workload as a contributing factor
 - **42%** identified work pace as a contributing factor
 - **83%** reported that work schedule contributed to fatigue
- Sleep Profile
 - At Home: **7.7 Hrs**
 - Away from Home: **6.5 Hrs**
Factors that most interfere with sleep

<table>
<thead>
<tr>
<th>Factor</th>
<th>Home</th>
<th>Away</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random noise</td>
<td>1.89</td>
<td>3.35</td>
</tr>
<tr>
<td>Fear of oversleeping</td>
<td>2.06</td>
<td>3.21</td>
</tr>
<tr>
<td>Temp</td>
<td>1.8</td>
<td>3.03</td>
</tr>
<tr>
<td>Jet lag</td>
<td>2.11</td>
<td>3</td>
</tr>
<tr>
<td>Ready for sleep</td>
<td>2.08</td>
<td>2.96</td>
</tr>
<tr>
<td>Restroom use</td>
<td>2.15</td>
<td>2.34</td>
</tr>
<tr>
<td>Personal worries</td>
<td>2.37</td>
<td>2.45</td>
</tr>
<tr>
<td>Stress</td>
<td>2.42</td>
<td>2.72</td>
</tr>
</tbody>
</table>
Context of Fatigue

Highest-rated fatigue factors overall and frequency of occurrence.

<table>
<thead>
<tr>
<th></th>
<th>Effect</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥14 hr duty day</td>
<td>4.19</td>
<td>2.54</td>
</tr>
<tr>
<td>Quick turns</td>
<td>3.82</td>
<td>2.56</td>
</tr>
<tr>
<td>10-13 hr duty day</td>
<td>3.77</td>
<td>3.56</td>
</tr>
<tr>
<td>≥14 cons. duty days</td>
<td>3.74</td>
<td>1.29</td>
</tr>
<tr>
<td>Short layover</td>
<td>3.72</td>
<td>3.08</td>
</tr>
<tr>
<td>No breaks</td>
<td>3.69</td>
<td>3.31</td>
</tr>
<tr>
<td>Missed meals</td>
<td>3.65</td>
<td>3.34</td>
</tr>
<tr>
<td>Long delays</td>
<td>3.64</td>
<td>2.39</td>
</tr>
<tr>
<td>Missed breaks</td>
<td>3.62</td>
<td>2.78</td>
</tr>
<tr>
<td>8-13 cons. duty</td>
<td>3.58</td>
<td>1.45</td>
</tr>
</tbody>
</table>
Fatigue Implications for Safety

• Of the flight attendants experiencing fatigue while on duty, **71%** reported their safety-related performance was affected.
 • **60%** believed ability to respond to passenger needs (including service and safety-related items) was compromised
 • **36%** reported cabin safety performance (e.g., arming/disarming doors) was affected
 • **34%** felt their vigilance regarding cabin security (e.g., passenger risk assessment was impeded)
 • **14%** indicated preflight safety briefings were affected
Recommendations from Flight Attendants

1. Provide food and drink on flights
2. Schedule time for meals between flights
3. Avoid multiple hour breaks between flights
4. Longer rest periods
5. Begin rest period at hotel
6. Limit duty hours
7. Limit flight segments/legs
8. Maintain consistent scheduling
9. Don't mix CDOs and early morning report times
10. Eliminate reduced rest

Bar Chart:
- Number of Respondents:
 - 0
 - 1000
 - 2000
 - 3000
 - 4000
 - 5000
 - 6000
 - 7000

- **R1:** Begin rest period at hotel
- **R2:** Long rest periods
- **R3:** Avoid multiple hour breaks between flights
Conclusions

- Flight attendants consider fatigue to be a significant issue
- Most have experienced fatigue while at work and agree it is a common experience
- Flight attendants consider fatigue a safety risk
- Scheduling factors made up 8 of the top-10 factors contributing to fatigue
- The availability of breaks and missed meals accounted for the other top-10 contributors to fatigue
- Flight attendant recommendations addressed the top-10 factors contributing to fatigue
Recommendations

• Examine ways to improve schedules from a science-based approach to maximize alertness and minimize fatigue

• Examine alternative nutrition and break opportunities while on duty. Healthy meals can only be beneficial if there’s opportunity to eat

• Implement a comprehensive, science-based fatigue countermeasures training program for flight attendants
Questions?

Katrina Bedell Avers, Ph.D.
Ph. 405-954-1199
Katrina.Avers@faa.gov

Thomas E. Nesthus, Ph.D.
Ph. 405-954-6297
Tom.Nesthus@faa.gov