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@ Hydrocarbon polymer systems =z

Most natural and synthetic polymer materials are flammable.
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@ Schematic of polymer combustion )
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3 Mechanism of flame retardancy ==

A Endothermic degradation
Al(OH); and Mg(OH):

B Gas phase radical quenching
Halogen, phosphorus and antimony

C Thermal shielding: Char formation
Phosphorus, Intumescents

D Dilution of gas phases
Metal Hydroxides and Carbonates

Can Graphite oxides (GO) be a promising flame retardant additive?
(1) Formation of Char to block further heat transfer (C)
(2) Releasing of carbon dioxide (D)

Prog. Polym. Sci. 2002 ,27, 1661



Flame retardant nano-additives "

Modification of materials at molecular to nanometer level

Carbon nanotubes (CNTs) and nano-clays have shown
effectiveness in reducing flammability — 0.1 — 5 wt % loadings

Improved mechanical properties

Works in condensed phase

— Inhibit release of volatile compounds

Exfoliated graphite oxide (GO)

— Intumescent filler

— Expands when heated

— Barrier to block further heat transfer

— Improved thermal stability for processing composites



Preparation of GO -
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@ Characteristics of graphite oxide ===
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@ Characteristics of graphite oxide )
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@ Characteristics of graphite oxide )
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Stabilization of GO o

Deposition of Mg(OH), on GO

1.4g NaOH 3.49g MgCl,*6H,0/10ml DI H,O Centrifuge 15mins
1g GO/50ml DI H,O > > > GO/Mg(OH),
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Stabilization of GO

Richardasmalley Institute

Protection of vicinal diols on GO
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Stabilization of GO it

Protection of vicinal diols on GO

CaHzmodified GO

Endothermjc decomposition

P
OH OH Cl 2
[ P ? 7 S
Cl
DMF ;4
Room temperature, overnight o
€
3
8 Dichlorophenylphsophine modified GO
© R
'gg/
S
(0]
<
Ca 2
OH OH o o g
L

:| |> CaH2 \
DMF c GO

Room temperature, overnight

r-—r 1 ~ 1.+t 1. 1 1 1 1T *r 1 = 1
0 50 100 150 200 250 300 350 400 450 500

Temperature(°C)

DSC curves of GO and GO derivatives

12



A Stabilization of GO o

Protection of vicinal diols on GO
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@ Polymer resin matrices studied here "z

AeroMarine 300/21
(inherently flammable epoxy)
[High heat release material]

Nusil silicone rubber R-2615A/B
(inherently flame retardant)
[Low heat release material]

Polymers can be cured at lower temperature to circumvent the
decomposition of GO (150-200 °C).

14



HVUL-94 flame tests

Two bars of each sample were tested

Each sample is exposed to flame for
10 s

After the ignition, the flame is
removed and the amount of time to
extinguish is recorded.

If the plastic self extinguishes in less
than 10 s with no dripping onto a
piece of cotton it is considered to be a
V-0 material.

ASTM D 3801-06

Richard 9Smalley Institute
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@ Silicon rubber/graphite oxide composites Rivhard33;;';;;;;3?1{9

Silicon rubber

(PartA) Bath Sonicator Degass, 1hr 60°C, overnight _ Silicon rubber/GO
GO . > > = composites
45mins
Curing agent
(Part B)
Self-extinguish | Self-extinguish
time time
1 2
Silicon 17s 18s
Rubber (SR)
SR/GO 12s 10s
(10phr)
SR/GO 5s 6s
(15phr)

phr: parts per hundred parts of resin 16



@ Epoxy resin/graphite oxide composites st o

Epoxy resin

GO

Bath Sonicator

Curing agent, 30s

60°C, overnight _ Epoxy resin/GO

45mins

v

Degass, 1lhr

Self-extinguish | Self-extinguish
time time
1 2

Epoxy resin 171s 168s
(EP)
EP/GO 163s 156s
(5phr)
EP/GO 141s 141s
(10phr)

phr: parts per hundred parts of resin

composites
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Micro combustion calorimeter
(MCC) testing
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FI. 1 Schematic Diagram of Apparatus

* Performed by Dr. Alexander Morgan at the University of Dayton Research Institute.
* Measures inherent flammability of a material by oxygen consumption calorimetry.

* Epoxy resin samples were heated at a rate of 1 °C/s under nitrogen from 250 to 750 °C

using method B of ASTM D7309 (pyrolysis under nitrogen), while silicone samples were

tested from 200 to 1000 °C using method A of ASTM D7309 (pyrolysis under nitrogen).

18



@ MCC testing of SR/GO composites ==

80 1 = SR control
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The addition of GO completely changes the thermal decomposition behavior of

silicone rubber:

(1) two distinct peaks of thermal decomposition/heat release merge into a single
peak with a lower temperature shoulder.

(2) HRR values go from 35-40 W/g to 60-70 W/g.

(3) At 10phr GO, the total HR increase slightly, but with 15phr GO, the total HR is
less than that of the base polymer.

19



@ MCC testing of SR/GO composites =iz

Char Yidd [HRR Peak({s) [Total HR [Char
Sample (wt%)  |value (Wig) | (kWg) |Notes

siicon rubber WI-2-181 A2 75.93(37_ 38 10.5|kept shape, hard black chunk
siicon rubber WL-2-181 A3 7263|3738 110

siicon rubber WIL-2-181 A4 76.06/35, 40 106

siicon rubber WI-2-181 B1 50.32(3. 79 12 2|kept shape, hard black chunk
siicon rubber WIL-2-181 B2 48 53|32 60 116

siicon rubber WI-2-181 B3 466530, 73 115

siicon rubber WIL-2-181 C1 51.06/27, 69 10.3|kept shape, hard black chunk
siicon rubber WL-2-181C3 50.33(26, 62 92

siicon rubber WI-2-181 C4 5097|2462 94

WL-2-181A Silicone rubber/GO composite (Ophr GO)
WL-2-181B Silicone rubber/GO composite (10phr GO)
WL-2-181C Silicone rubber/GO composite (15phr GO)
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@ MCC testing of EP/GO composites ™=

400
Ao EP Control
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The addition of GO changes the thermal decomposition/heat release profile for

the epoxy resin:

(1) 10 phr GO increases peak HRR slightly, but 15 phr GO decreases the peak
HRR values.

(2) These peaks begin to merge into one larger peak with small shoulders

(3) Addition of GO inhibits the degree of crosslinking in the epoxy
nanocomposites?
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@ MCC testing of EP/GO composites ™

(har Yidd [HRR Peak{s) [Total HR |Char

Sample {wi%) Value (W/g) | (k¥g) [Notes

Epoxy resin WL2-180 A1 4 45(389, 352 24 1|pan all black_ shiny residue around edge
Epoxy resin WL2-180 A2 468394 375 244

Epoxy resin WIL2-180 A3 464|369, 351 239

EPIGO WL2-180 B1 531323 392 281|  23.5|pan al black, dull residue around edge
EPIGO WL2-180 B2 497|373 390, 265| 248

EPIGO WL2-180 B3 510357, 475, 294| 242

EPIGO WL2-180 C1 82224, 241, 190 26 3|pan al black dull residue on bottom
EPIGO WL2-180 G2 79422 258 252 26.2

EPIGO WL2-180 C3 8.79(24, 271, 250 257

WL-2-180A Epoxy resin/GO composite (Ophr GO)
WL-2-180B Epoxy resin/GO composite (10phr GO)
WL-2-180C Epoxy resin/GO composite (15phr GO)
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Conclusions and future work e

To some extent, GO is a good flame retardant additive due to the
following reasons:

— slow down the mass loss rate

may not see this effect in the MCC (too small of sample)
— induce anti-dripping effects

Decomposition of GO partially increases the heat releasing rate of the
polymer matrix.

— GO decomposition is exothermic

Future work should be focused on fully understanding of curing process
upon addition of GO.

Effort should be made to combine GO with other flame retardant
additives for synergistic effect.
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