Development of Improved Composites and Adhesives for Aircraft Structures and Interiors

Dennis Cardoza Olaf Lammerschop David Leach Helen Li

Agenda

Henkel Background

Development of Improved Products

>New Approach to development of FST products

> Specific Examples:

- Structural Paste adhesive for Aircraft Interiors
- Composites for structural aplications

> Summary

Henkel Areas of Competence

Quality with Brands & Technologies

Structural Adhesive Products

Hysol[®] Aerospace Products

Paste, Films, Primers, Wet Peel Ply

SynCore[®] Syntactic Films

Lightweight stiffening replacement

SynSpand[®] Expanding Syntactic Films

Lightweight core fill & potting Jet engine abradable seal applications

SynSkin[®] Composite Surfacing Films

Superior surface for painting & lightning strike foil/screen protection

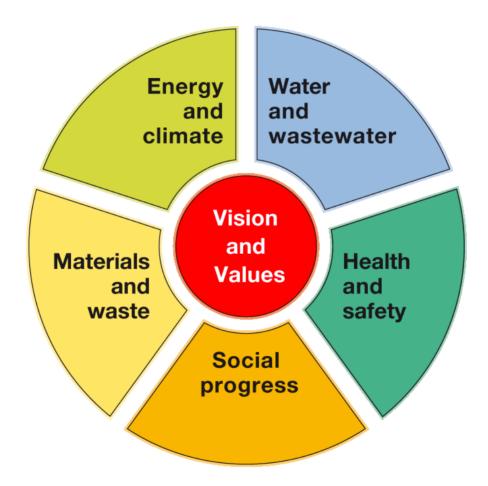
Frekote[®] Composite Release Polymers

World's standard semi-permanent mold release system

Aerospace Group of Henkel

- Henkel leverages R&D and PD laboratories over the world to serve the Aerospace market
- Henkel Aerospace covers the product range from pretreatment to the final bonding process

Development of Improved Products: Industry Needs



Industry Needs

- Improved Flame, Smoke and Toxicity
- > Performance criteria: mechanical, damage, temperature, ageing.....
- Meet current and future environmental standards
 - Workplace exposure resins/flame retardants
 - In service exposure
 - End of life
- Cost:
 - Acquisition: material and fabrication
 - Total life cost
- Ease of use:
 - Storage, processability, working life, cure etc

Our Strategy for Sustainability: Five Focal Areas

Industrial Applications/Markets of Flame Resistant Materials

Aerospace Industry

Interior (adhesives, core materials, acoustic materials, laminates)

Composite structures

Railway and road transportation market

Interiors (adhesives, foams, laminates)

Composite structures

Naval Structures

Interiors (adhesives, foams, laminates)

Composite structures

Electronics, PCB, battery markets

Low ignition materials, dielectrics

Offshore Oil & Gas Production Platform

Building & Construction Industry

Technical Analysis – Flame Resistance

Resins	PhenolicsBenzoxazinesCyanate EstersPolyimidesSpecialty EpoxiesBismaleimide Resins (BMI)	Standard Epoxies Polyurethanes Acrylics Vinylesters Vulcanized Rubbers	Resins
Curatives	Phenolics Cresol Novolacs Amines + High Crosslink Density Melamines	DICY Acids Anhydrides Amines + Low Crosslink Density	Curatives

Sixth International Aircraft Fire and Cabin Safety Research Conference

Hen

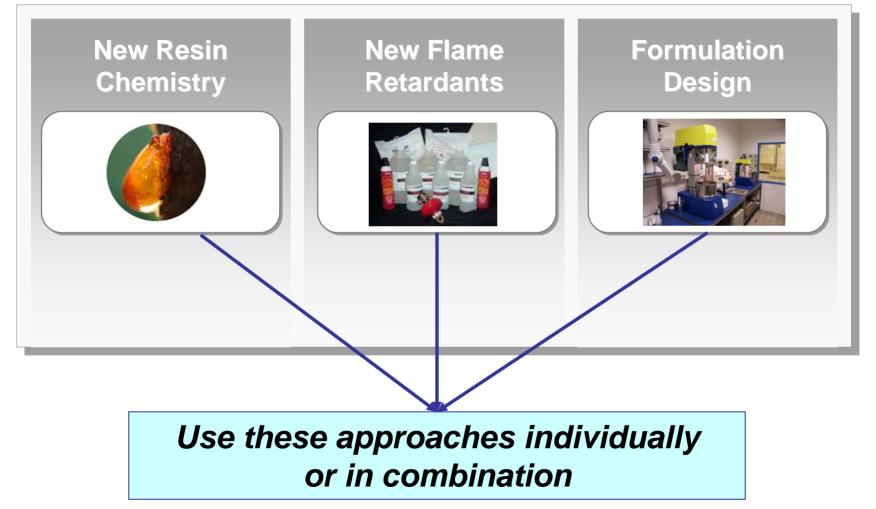
Technical Analysis – Flame Resistance

"The thermal stability of epoxy resins, as well as their flammability, depends on the structure of the <u>monomer</u>, the structure of the <u>curing agent</u> and the <u>crosslink density</u>"

"Thermal decomposition, combustion and flame-retardancy of epoxy resins – a review of the recent literature" S V Levchik, E D Weil Polym Int. 53 1901-1929 (2004)

General Trends

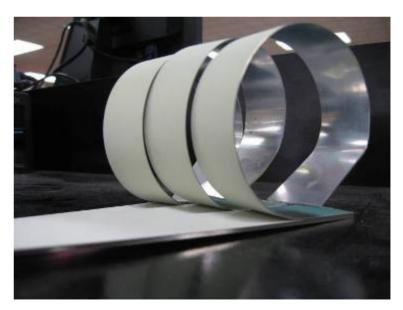
Higher Crosslink Density >> Lower Crosslink Density


→ 1-Part Heat Cure & High Tg >> 2-Part RT Cure & Low/Med Tg

Higher Charring Tendency >> Lower Charring Tendency

→ Phenolic Systems, Highly filled Systems better

Paths to Improved Flammability Resistance


Structural Paste Adhesive: Aircraft Interior Applications

Flame Resistant Structural Paste Adhesive

- > Flame retardant paste adhesive designed for interior applications
- > White, two-part paste
- > High dispensability
- > High Mechanical properties
- > Meets FST requirements

Flame Resistant Structural Paste Adhesive LP31007.0

Components		Part A		Part B		
Color	Color		White		Straw	
Specific Grav	Specific Gravity		1.43		1.35	
Characteristic		Moderate Liqu	,			
Mixed Adhesive		Units	Temperature		LP31007.0	
Mix Ratio A/B	volu	ume/volume			2/1	
IVIIX NAUU A/D	we	eight/weight			2.12/1	
			23°C (7	5°F)	91	

Dispensability¹

Flow

1. Dispensability determined using 200 ml side-by-side cartridges

gpm

inches / 10 min

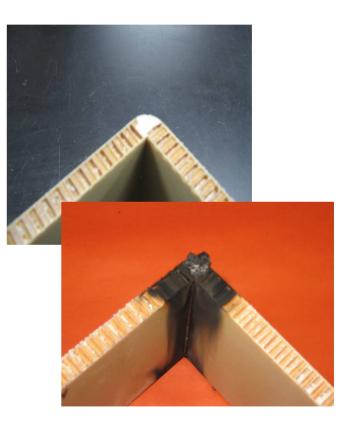
cm / 10 min

Sixth International Aircraft Fire and Cabin Safety Research Conference

37°C (99°F)

23°C (75°F)

300


0.85

2.2

Typical Flammability Results

Extinguishing Time	Burn length		
(seconds)	(cm / in)		
~1	2.5 – 3.8cm (1 – 1.5inch)		

- Corner exposed to flame for 60 Seconds
- Extinguish time is time to extinguish after ignition source is removed
- Burn Length is the distance the surface skin was eroded from the edge of specimen

Flame Resistant Structural Paste Adhesive Mechanical Performance

Cured Properties	Units	Test Temperature	LP31007.0
Lap Shear Strength	MPa	23°C (75°F)	23.6
	IVIF a	71°C (160°F)	19.1
Working Life after 1 hour at 23°C (75°F)	MPa	23°C (75°F)	23.6
Working Life after 1 hour at 37°C (99°F) (300 gpm)	MPa	23°C (75°F)	21.8
Modified Bell Peel	N/cm	23°C (75°F)	34.7
'Ditch and Pot' Mechanical Strength	Ν	23°C (75°F)	133
'Ditch and Pot' Burn (extinguish time)	sec	NA	<1

Flame Resistant Structural Paste Adhesive Conclusions

> Using new Technology Approach Henkel has develop a new Structural Paste Adhesive which:

- Exceeds flammability requirements
- > Has improved mechanical performance
- Meets dispensability requirements
- Long working life
- Self colored white

Structural Composites: Benzoxazine Matrix Resins

Structural Composites Industry Needs

Structural Composites used for many years:

- Commercial Aircraft secondary structures
- Military Aircraft primary structures
- > Main Resin Systems:
 - Epoxy
 - Bismaleimide

Increasing use of composites in commercial aircraft

Structure:

Fuselage, Wings

- Engines and nacelles
- High temperature areas: APUs
 Engine pylons
 Wheel wells
 - Leading edges (de-icing)

Henkel Benzoxazine Resin

- Ambient shipping and storage
- Material costs comparable to Epoxy
- Process equivalent to Epoxy
- Excellent FST performance

Compared to epoxy resins

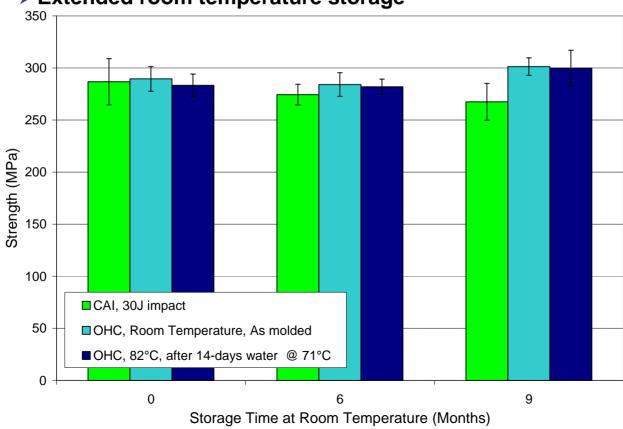
- Lower cure shrinkage and heat release
- > Higher hot/wet performance
- Inherent FST characteristics

G_{1c} G_{1c} Henkel BZ Resin BMI BMI BMI 50 100 150 200

Hot/Wet Tg, °C

Compared to phenolics

- No microcracks
- No water generated

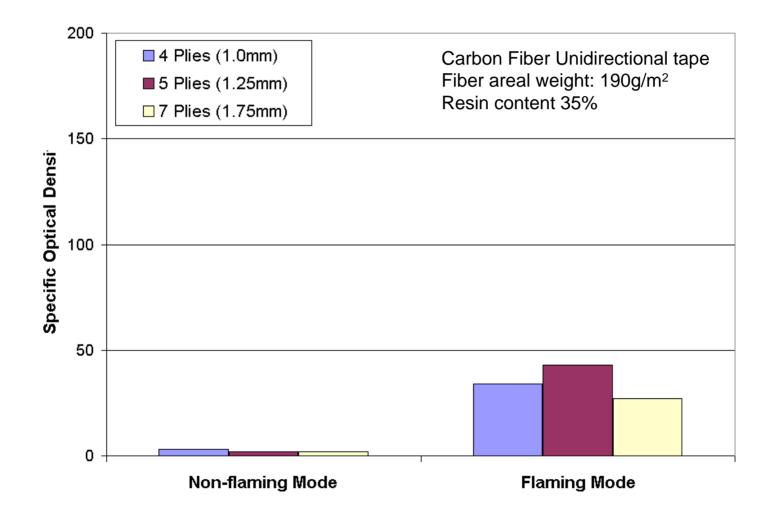

Compared to BMI

- > Lower cure temp and shorter cure time
- Lower cost
- Higher toughness

Epsilon Benzoxazine Prepreg Resins

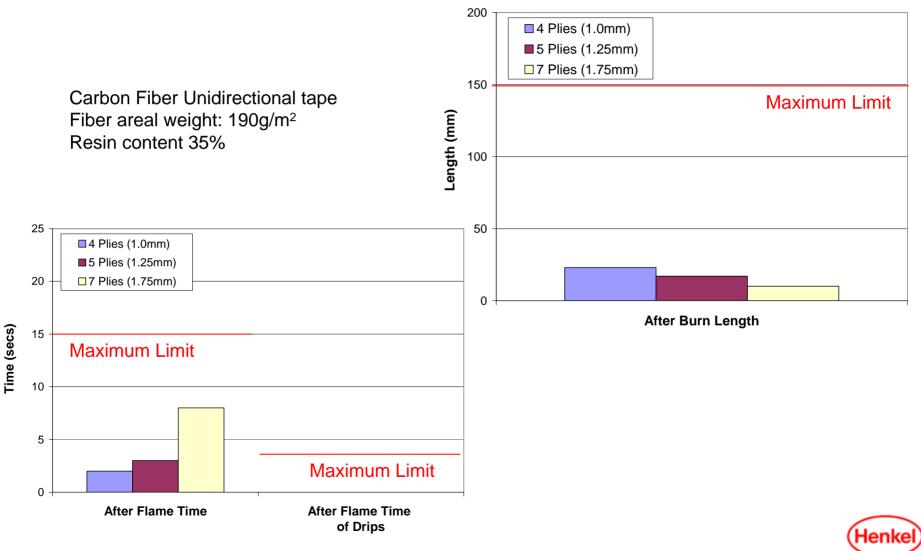
- > High retention of hot/wet properties
- > Damage tolerance equivalent to toughened epoxy prepregs
- Meets flammability and burn-through requirements

> Extended room temperature storage

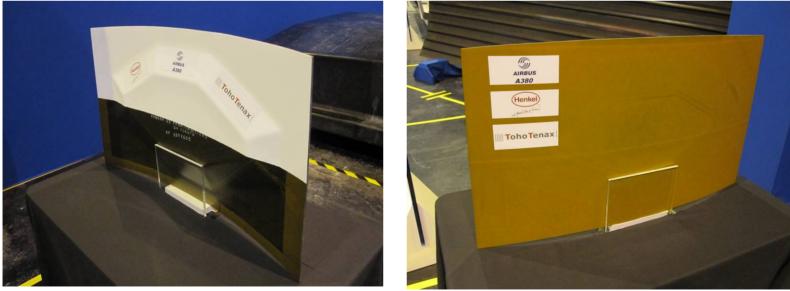

Epsilon Benzoxazine Prepreg Composite: Flame, Smoke and Toxicity

Property	Units	Limit	Epsilon				
			Composite				
Vertical Burn: 60secs							
After burn length	inch	6	0.91				
After flame time	secs	15	2				
After flame time of drips	secs	3	No Drips				
			Non-Flaming	Flaming			
			Mode	Mode			
Smoke Density							
Specific Optical Density	N/A	200	3	34			
Toxicity							
HCN	ppm	150	0	0			
CO	ppm	1000	2	40			
NO/NO ₂	ppm	100	0	2			
SO ₂ /H ₂ S	ppm	100	0	2			
HF	ppm	100	0	0			
HCI	ppm	150	1	1			

4-ply Carbon Fiber Composite Unidirectional Tape: 1mm thick



Structural Composite: Smoke Test Results


Structural Composite: 60sec Vertical Burn

Structural Composite Application

>A380 APU Housing & Duct:

- Carbon fiber, Glass Fiber Prepreg and Film Adhesive
- Meets Structural Performance requirement
- Meets standard FST requirements: OSU, Vertical Burn, Smoke, Toxicity
- >Meets oil burner 15min, 1100°C burn-through requirement

Summary

> Requirements becoming more demanding:

Flame, smoke and toxicity requirements Health, safety and environmental requirements Service performance Processability Cost: Acquisition and total life cycle

> New approach needed to materials development:

Resin chemistry Flame retardants Formulation design

> Initial Product Developments

Flame retarded paste adhesive for structural bonding Structural composites using Benzoxazine matrix resin

