Anti-flammable polymers and nanocomposites

Todd Emrick, Polymer Science & Engineering, UMass Amherst

Funding: Federal Aviation Administration, U.S. Army, and the members of the polymer flammability industrial consortium (Cluster F) at the University of Massachusetts Amherst

Acknowledgements

Emrick Group (top-to-bottom) C.C. Chang

Beth Cooper, Yunxia Hu, Katrina Kratz, Samantha McRae, Caroline Miesch, Delphine Chan-Seng Zak Page, Brent Hammer, Cheol Hee Lee, Xiangji Chen, Matt Rozin, B. Ryu, Sangram Parelkar (not pictured: P.K. Sudeep, Irem Kosif, Jimmy Lawrence, Emily Pentzer)

Background

Synthetic organic polymers

- A mainstay of modern society, used in fabricating textiles, upholstery, construction materials, vehicles, and electronic devices

- Pose a significant threat due to their inherent flammability

Halogenated flame-retardants (FRs)

- Highly effective for flame-retardation as additives to polymer materials
- Face legislative scrutiny, due to health and environmental concerns (particularly related to bioaccumulation and toxicity)

tris(2,3-dibromopropyl)phosphate

polybrominated diphenyl ether (PBDEs)

Small molecule flame-retardants

Halogenated

Effective and inexpensive Used in commodity polymers (polycarbonate, polyurethanes, epoxy ,etc.)

Environmental persistence Toxicity Restrictions and legislation

Non-halogenated

- Aluminum trihydrate
- Magnesium hydroxide
- Phosphorus, nitrogen, and silicon-based inorganics

Environmentally-friendly Used in commodity polymers

High loading needed for FR activity Negative impact on mechanical properties of host polymer materials Limitation in high-temperature applications

Broader Project Objectives

- Synthesis of novel inherently fire-resistant polymers
- Requirements:
 - High thermal stability
 - Low combustion heat release rate
 - Minimal toxic fume release
 - Environmental friendly (non-halogenated)
 - High char formation
- Polymers with high C/H ratio (aromatic, high degree of unsaturation) show better fire-resistant properties, as the lack of hydrogen fuel leads to facile char formation

Presentation topics for:

The Sixth Triennial International Fire & Cabin Safety Research Conference October 27, 2010

- 1) Deoxybenzoin-containing polymers (BHDB)
 - 2) Bis-phenol triazole (BPT) polymers

Heat release capacity (HRC) of polymers

Pyrolysis combustion flow calorimetry (PCFC) enables effective analysis of milligram quantities of novel and known materials!

Walters, R.N.; Lyon, R.E. J. Appl. Polym. Sci. 2003, 87, 548

Bisphenol Avs. Bisphenol C

сі сі но он Bisphenol C		
	Bisphenol A Polycarbonate (Lexan)	Bisphenol C Polycarbonate
Morphology	Amorphous	Amorphous
Tg (°C)	152	168
Flex Modulus (ksi)	336	376
Flex Strength (psi)	16,300	16,200
Tensile Yield Strain (%)	10	11
NBS Smoke (Dm)	165	75
Oxygen Index (%)	26	56
HR Capacity (J/g.k)	390	29

J. Polym. Sci. Part A: Polym. Chem. Ed. 1980, 18, 579; J. Appl. Polym. Sci. 2003, 87, 548

Rationale for observed bis-phenol C charring

Deoxybenzoin conversion to diphenylacetylene at high temperatures

Ramirez, M. L. *Thermal Decomposition Mechanism of 2,2-Bis(4-hydroxyphenyl)-1,1-dichloroethylene Based Polymers. DOT/FAA/AR-00/42.*; Department of Transportation, Federal Aviation Administration, National Technical Information Service: Springfield, VA, 2001; Stoliorav, S.I.; Westmoreland, P.R. *Polymer* **2003**, *44*, 5469; van der Waals et al. *J. Mol. Cat. A* **1998**, *134*, 179

BHDB preparation from desoxyanisoin, and integration into polyarylates

Desoxyanisoin

4,4'-bishydroxydeoxybenzoin (BHDB)

- One step synthesis of monomer in high yields, up to 500 g scale
- <u>Polyarylate</u>: HRC = 65 J/g-K; Char yield = 45%
- Low solubility and low molecular weight (M_w < 5000 g/mol)
- Copolymerization improves processibility

BHDB-Polyarylate

Ellzey, K. A.; Ranganathan, T.; Zilberman, J.; Coughlin, E. B.; Farris, R. J.; Emrick, T. Macromolecules 2006, 39, 3553

BHDB-based halogen-free polymers are "ultra fire-resistant"

Heat release capacity = 65 J/g-K Char yield = 45 %

Heat release capacity = 80 J/g-K Char yield = 52 %

Macromolecules 2006, 39, 3553; Macromolecules 2006, 39, 5974 J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4573; Polym. Degrad. Stab. 2008 Deoxybenzoin epoxy adhesives: Polymer, 2009

Federal Aviation Administration flammability testing

Predominant charring, no dripping, and lowest flammability (5VA) rating

Reducing flammability of polyurethanes

- Polyurethanes from polyols + diisocyanates, or polyisocyanates + diols
- Depending on formulation, polyurethanes are obtained with varying hardness and density
- Polyurethane foams:

used in mattresses, upholstery, automobile seats, etc.

- Halogenated additives reduce flammability
- Objective: prepare non-halogenated low flammable polyurethanes
 with no additives (small molecule or otherwise)

Potential options for deoxybenzoin in polyurethanes

1. Deoxybenzoin for isocyanate formulations

2. Deoxybenzoin for hydroxyl formulations

Journal of Materials Chemistry, 2010

Charring polyurethane foams

Objective: impart flame resistance and charring to foam, while maintaining suitable properties

Polymer	Reagents (weight %)			PCFC		TGA	
	Polyether polyol	BHDB- oligomer	MDI- prepolymer	Others ^a	HRC (J/g-K)	THR (kJ/g)	Char yield (%) ^b
18	74.9	0	23.1	2.0	476	22.9	0
19	62.6	12.6	22.8	2.0	437	21.1	15
20	53.6	21.6	22.8	1.9	371	19.9	19

Commercial systems, BHDB, and BPT

Halogen-free ultra low flammability polymers

Thermally induced structural transformation: BHDB and BPT

Bis-phenol triazole (BPT) T. L. Gilchrist *et. al. J. Chem. Soc. Perkin Trans.* 1, 1975, 1-8

diphenyl-1,2,3-triazole

Bisphenol-1,2,3-triazoles (BPT)

Synthesis and purification of BPT monomers

¹H NMR spectra of BPT monomers

3

8

4-BPT polyarylate

Synthesis of 4-BPT polyarylate

interfacial polymerization

*4-BPT polymer is insoluble in common organic solvents such as DMSO, DMF, and NMP

Heat release and char properties of 4-BPT polyarylate compared to bisphenol A (BPA) and other commercial polymers

polymer	HRC (J/(g K))	THR (kJ/g)	char (%)
BPA polyarylate	456 ± 13	17.7 ± 0.5	26
BHDB polyarylate	65 ± 5	7.5 ± 0.2	45
4-BPT polyarylate	46 ± 5	6.8 ± 0.3	47
Kevlar®	363 ± 2	8.8 ± 0.5	38
Nomex®	99 ± 1	6.6 ± 0.2	<i>43</i>

4-BPT/BPA copolyarylate

*4-BPT/BPA copolymer is insoluble or partially soluble in common organic solvents

Heat release and char properties of 4-BPT/BPA copolyarylate

polymer	HRC (J/(g K))	THR (kJ/g)	char (%)
BHDB/BPA 53/47	148 ± 10	12.3 ± 0.5	34
4-BPT/BPA 50/50	95 ± 4	12.0 ± 0.5	38

3-BPT polyarylates

Angewandte Chemie, 2010, in press

3-BPT polyarylates

Estimated molecular weights of 3-BPT polymer and copolymer

noh/mor	GPC ^a			_ η _{inh} ^b
polymer	Mn	Mw	PDI	(dL/g)
3-BPT polyarylate	10,900	27,600	2.53	0.48
3-BPT/BPA 50/50	7,800	17,900	2.29	0.42

^a Molecular weights were estimated by size exclusion chromatography in NMP (0.05 M LiCl) at 80 °C. ^b Data were obtained at room temperature.

polymer	HRC (J/(g K))	THR (kJ/g)	char (%)
3-BPT/BPA 50/50 ª	102 ± 5	11.3 ± 0.4	44
4-BPT polyarylate	46 ± 5	6.8 ± 0.3	47
3-BPT polyarylate	23 ± 3	4.6 ± 0.2	56
Kapton®	14	4.0	66

^a Incorporated ratio was measured in ¹H NMR spectrum.

Thermally induced structural transformation

Mechanical properties and flame test on a small sample

Initial tensile test of 3-BPT polymer

- hot pressing at 250 °C for 10min.
- sample size: 3×0.3×0.025 cm
- ultimate strength: 95±25 MPa tensile modulus: 2.5±0.3 GPa

a) 3-BPT polymer film formed by hot-pressing; b) 3-BPT fibers pulled from the melt.

Small-scale flame test

Conducted by placing a sample specimen approximately $(2 \times 0.5 \times 0.025)$ cm in a propane torch flame at a 45 deg angle for 5-10 s and noting the time required for the sample to self-extinguish upon removal from the flame

Films of BPT polymers were seen to be extinguish immediately. ('self-extinguishing')

Small-scale flame test configuration; b) samples after the test (left: 3-BPT polyarylate; right: Kapton®.