Novel Anti-flammable Polymer Materials: Synthesis and Characterization

B. Ryu, S.C. Moon, E. Bryan Coughlin, Richard Farris, and Todd Emrick Polymer Science & Engineering Department, University of Massachusetts 120 Governors Drive, Amherst, MA 01003

Abstract

Flame retardants are required to reduce the flammability of polymer materials used in various commercial applications, including materials for aircraft cabins. The widelyemployed halogenated flame-retardant additives, such as bromoaromatic derivatives, are non-ideal, due to their associated environmental and bio-accumulation. Thus, there is a pressing need for new inherently flame-resistant polymers that are both halogen-free, and that possess low heat release capacities and high char yields. Deoxybenzoin-containing polymers represent one such polymer candidate, as they possess high char yields, due to thermally-induced rearrangement chemistry that leads to diphenylacetylene precursors to char. In this presentation, the use of the bisphenol and diisocyanate of deoxybenzoin will described for the preparation of step-growth polymers, ranging be from polyphosphonates to polyurethanes. In addition, the processing of nanocomposite materials will be presented, especially using an electrospinning and melt-processing sequence for the preparation of high-performance low-flammability polymers.