Future Challenges for the Research and Regulatory System

Richard Hill, FAA William J. Hughes Technical Center Jeff Gardlin, FAA Transport Airplane Directorate

October 29, 2007

5th Triennial International Fire & Cabin Safety Research Conference

FAA's Safety Life-Cycle Responsibility

- Threat identification
- Prioritization
- Mitigation research
- Implementation
- Assessment

Research is Foundation of New Requirements

- New requirements evolve from many different drivers
 - New technology
 - Service experience
 - Emerging threats
 - Improvement in state of the art
- Research is linked to safety and regulatory support
 - What to do
 - What not to do

Identification and prioritization

Researchers and Regulators Work Together

- Earliest stages of new requirements
- Research is geared to support safety standards
- Useful research leads to better standards

Challenges Come from Different Places

- Technology: Regulations 'assume' certain technological norms (e.g., materials or configuration)
- Threats: New sources of safety risks can arise (e.g., security concerns)
- Environment: Changes in exposure to risk (e.g., Volume of air traffic or types of airplanes)

Technological Changes (many improve safety)

Composite Airframe:

- Crash dynamic behavior
- Fire safety in post-crash or in-flight scenarios

Magnesium Alloys

Automation:

- Evacuation systems
- Exit operation
- Seating

Power technology

- Lithium ion batteries
- Fuel cells

Threats are evolving

- Security traditionally removed from aviation safety
- Security is now more integral with classical safety considerations
- Carry-on items evolving to contain potentially hazardous materials

The Environment is different

- Added capacity increases exposure to a given event
- Safety level is very good, making each incident more prominent
- Each successful safety innovation tends to mute the effectiveness of the next one, i.e., fewer benefits available to be realized

Realities

- Technology moves faster than the pace of regulation
 - Special Conditions become necessary
 - Criteria lag the design
- There is a limited capacity to process regulatory changes
- Each generation of airplane has a better safety record than the previous generation

Example:

The Use of Magnesium in Airplane Interiors

Drivers for Industry:

Reduced weight

Improved Fire Resistance – New alloys / coatings

Possible Locations of Magnesium Use

seat components

overhead ducts

galley components

lavatory components

floor components, seat track

? Do present standards address its usage ?

No!

The Use of Magnesium in Airplane Interiors Prioritize Research Based On Need.

Need By Usage Area.

Seats First?
Industry must participate and contribute resources, i.e.,
Magnesium is not a safety enhancement—its benefits are economic

Researchers and Regulators Work Together To Develop Plan

Work Together With Industry & Other Authorities Through the International Aircraft Materials Fire Test Working Group

Potential Threats:

In-Flight

Electrical Arc

Adjacent Hidden Fire

O₂ canister fire

Consider terroristic threat?

Potential Threats:

Post crash

External fuel fire entering cabin

Safety of passengers

Safety of firefighters?

The Use of Magnesium in Airplane Interiors

Feasibility Testing:

Development of Test Protocol:

Clearly defined threat

Full-scale test findings

Lab-scale test development

Development of Test Protocol:

Post crash Test

Oil burner apparatus, what heat flux?

Duration of test, 2-min or 5-min?

Size, shape of test sample?

Pass/Fail criteria?

Coordinate Test Method Development:

CSRTG

IAMFTWG

Begin Process Again If Needed

Next Usage Area

Continue R&D and Coordination During Implementation Phase of New Test Method.

Looking to the future

- Prioritization of resources is essential
- Awareness of new technologies and design practices in advance of implementation is key
- International cooperation must continue
 - With industry
 - With other authorities

Prioritization

- Accident prevention is primary goal
- Accident mitigation is required when there is a failure to prevent an accident
- Accident mitigation measure will generally have lower priority than accident prevention

However:

- Accidents are "accidental"
- Increased traffic with same or lower accident rates still results in some accidents
- New threats may not ever disappear