

Flame Propagation

Product Compliance and Capability &

Alternate Test Method

For Non-Encapsulated Fiber Glass Insulation

M. Shumate & J. Stacy

Flame propagation

Product Compliance and Capability 14 CFR 25.856 (a)

FAA test rig

Alternate test method

Objective

- Microlite®AA fiber glass insulation blanket
 - Validate product meets FAA requirements
 - Demonstrate product capability
- Develop and qualify an alternate test method for use during manufacturing

Install Insulation

Test

After Test

Scope

- Density
 - 0.34 pcf to 1.5 pcf
- Thickness
 - -3/8" to 1"
- Binder content range
 - 10% to 20%
- Insulation Surface
 - Top vs bottom surface
- Product evaluation
 - 8 products
 - Multiple production runs (>32)
 - 6 year span

Premium .34 pcf x 1"

Standard 0.42 pcf x 1"

Standard 1.5 pcf x 3/8"

Test Results

- Flame propagation
- After flame
 >200 samples tested

No failures
No failures

Pass

Pass

Pass

Test equipment – FAA test rig (gas & electric)

Test Results – Example

Product		Prem .34 pcf x 1"			Std 0.42 pcf x 1"			Std 1.5 pcf x 3/8"		
Sample	Blanket	AF*	FP	R	AF*	FP	R	AF*	FP	R
#	Orientation	(Sec)	(ln)	P/F	(Sec)	(ln)	P/F	(Sec)	(In)	P/F
ID.		80402636			6246			90203630		
1	Тор	0	0	Р	0	0	Р	0	0	Р
2	Тор	0	0	Р	0	0	Р	0	0	Р
3	Тор	0	0	Р	0	0	Р	0	0	Р
4	Bottom	0	0	Р	0	0	Р	0	0	Р
5	Bottom	0	0	Р	0	0	Р	0	0	Р
6	Bottom	0	0	Р	0	0	Р	0	0	Р
ID.		102202323			12212223 ½" thick			102212323		
1	Тор	0	0	Р	0	0	Р	0	0	Р
2	Тор	0	0	Р	0	0	Р	0	0	Р
3	Тор	0	0	Р	0	0	Р	0	0	Р
4	Bottom	0	0	Р	0	0	Р	0	0	Р
5	Bottom	0	0	Р	0	0	Р	0	0	Р
6	Bottom	0	0	Р	0	0	Р	0	0	Р

Capability Analysis

Product capability - 4.40 6 sigma level

Small Scale Test Benefits

- In process test method
- Simple design/operation
- Simple/quick QA procedure
- Quick start-up
- Short test cycle

Methodology

- Establish product standards
 - Utilizing FAA test rig
- Develop multi-factorial design of experiment (DOE)
 - Design samples for flame propagation testing
 Key to develop new test
- Design and build small scale radiant panel
- Develop & verify test parameters
 - Establish robust test settings (2nd DOE)
 - Conduct gage R&R (Reproducibility & Repeatability)
- Validate with FAA test rig

Multi-Factorial DOE

- Design layout 3 factor multi-level
- Plant trial to produce samples
 - Goal: Produce one product that will fail the FAA test
- Evaluate samples at FAA
 - Identify which samples show flame propagation and/or after flame

Multi-Factorial Design

FAA Radiant Panel Tests

(Electric panel)

- Evaluate DOE samples
- Check for flame propagation
- Check for After flame

Results:

- One sample showed flame propagation
- No samples showed after flame

Radiant Panel

- Small oven
- Large viewing window
- Radiant source
 - Horizontal orientation
 - Multiple elements
 - Preset sample height

Equipment

Radiant heat

Power control

Flame source

Power Control

- Heat flux control
 - Constant power
 - Variable voltage regulator
 - Preset input (voltage/amp)
- Temperature measurement
 - Type "K" thermocouple

Flame Source

- Butane flame
- Continuous
- Flame length
 - 1" to 1 ½"
- Flame angled
 - 20 to 30 degrees
- Burner distance from sample

Develop Small Scale Test Parameters

- Use FAA test rig as control
 - Goal: Provide similar results as the FAA test
- Establish test parameters (2nd DOE)
 - Power setting
 - Temperature
 - Time
 - Measurement technique

Robust Test Setting

Settings

- Power settings
 - voltage & amperage
- Temperature
 - Start temp 385F
- Flame length
 - 1" to 1 1/2"
- Test time
 - 7-10 seconds
 >1700 tests conducted to establish robust settings

- Flame propagation
 - Similar results to FAA tests
- After Flame
 - No after flame was observed
 - Results same as FAA

Gage R&R

(Reproducibility & Repeatability)

- < 2% for Reproducibility
 - operator factor
- < 23% Repeatability
 - equipment factor
- Gage R&R was < 23%
 - Statistical baseline gage R&R allows for process control <30%

Process Capability

FAA and Small scale tests show the same results

FAA radiant panel vs. Small scale test

- Results same for either method
- FAA radiant panel is primary test standard
- Small scale test method use by JM considered secondary standard
 - Small scale test acceptable for use as process monitor for testing non-encapsulated fiber glass

Summary

Capability analysis

 <1 chance in a million for Microlite AA failure for after flame or flame propagation (using FAA radiant panel)

Certification

- JM references FAR 25.856 (a) for un-faced or plain blankets as tested to the small scale radiant panel (periodically verified to the FAA standard)
- JM continues to certify to FAR 25.853 Appendix F part I standard for flame spread and punking

Product compliance

 Small scale radiant panel as part of JM QA system (> 13,000 tests performed as process check)

Validation

Periodic comparison tests between FAA test rig and small scale test