State of the Art of Fuel Tank Ullage Oxygen Concentration Measurement

William Cavage
AAR-440 Fire Safety Branch
Wm. J. Hughes Technical Center
Federal Aviation Administration

International Fire and Cabin Safety
Research Conference
Tropicana Casino and Resort

Atlantic City, NJ USA October 29 - November 1, 2007

Outline

- Background
- Technologies Examined
- Testing Performed
- Results
- Summary

Background

- The measurement of ullage oxygen concentration is important to the fuel tank inerting community when researching methods, validating models, and certifying systems
 - FAA method for measuring ullage oxygen concentration at reduced ullage pressures has been successful but can be cumbersome
- Emerging products have the potential to simplify and improve upon R&D / Certification work on fuel tank inerting
 - Air Force has spent some money in this area giving SBIR money to 4 companies and "developing" two methods
 - Galvanic cell technology cheaper and more effective than ever
 - In situ measurements would be great if practical

Technologies Examined

- FAA gas sampling method with traditional galvanic cell
 - Same as OBOAS regulated sample train without safety features
- In situ galvanic cell
 - Ultra low power, intrinsically safe, galvanic cell can be used in situ and calibrated for low pressure exposure
- Gas sampling using light absorption with TLD
 - Unregulated sample train using a sample "cylinder" that measures infrared light absorption from a tunable diode type laser
- In situ light absorption using TLD
 - Similar sensor technology as sampling method packaged in a 5" probe
- In situ next generation fluorescence quenching
 - Small fiber optic probe with temperature compensation built in

FAA Oxygen Concentration Measurement Method

FAA Environmental Chamber with Test Equipment

Testing Performed

- First put all available sensors in a PVC tube and exposed them to calibration gases at various altitudes
- Second installed the available sensors in test tank and exposed them to simulated CWT ullage environment and flight cycle
 - Used existing 17³ foot aluminum fuel tank in altitude chamber
 - Put fuel in tank as well as inerted the ullage with nitrogen
 - Performed simulated mission complete with ground heat up, ascent, cruise, and descent with simulated inerting system performance
- Fluorescence quenching not available at the time of testing
 - Equipment installed on Alenia aircraft for validation testing

Results – Evaluation of Methods Data

- The different methods gave varying results at what gases and altitudes duplicated calibration gases best
 - FAA method only one that duplicated calibration gases consistently
- All tested technologies followed the general trend of the FAA method data for the simulated CWT ullage test
 - Both TLD methods could not give results at low partial pressures of oxygen
 - In situ galvanic cell gave sporadic results after being exposed to low static pressures
- Preliminary tests on the Alenia aircraft of the Next Gen Fluorescence quenching gave reasonable results on ground
 - Flight test data trends do not jive with reality

Results of CWT Environment Simulation Test

Alenia Aircraft Ground Testing Results

Summary

- State of the art of ullage oxygen concentration measurement has improved considerable in the last 3-5 years
 - Several TLD absorption products available
 - Fluorescence quenching probes in flight test aircraft fuel tanks
- Additional work needed for all of these products to be able to duplicate a wide range of calibrations gases at a wide range of altitudes