Thermo-Kinetic Model of Pyrolysis (ThermoKin)

Stanislav I. Stoliarov^a and Richard E. Lyon^b

^aSRA International, Inc., Egg Harbor Twp., NJ 08234

^bFAA Technical Center, Atlantic City International Airport, NJ 08405

The Main Question

Model Geometries

Material Is Represented by a Mixture of Components

Components are characterized by: mass density

heat capacity

thermal conductivity

gas transfer coefficient

radiation absorption coefficient

surface emissivity

The properties depend on temperature: $property = p_0 + p_1T + p_nT^n$

Components are classified as: solid

liquid

gaseous

Components May Undergo Reactions

$$\theta_B \text{ COMP } B + \theta_C \text{ COMP } C \rightarrow \theta_D \text{ COMP } D + \theta_F \text{ COMP } F + heat$$

$$rate = A exp\left(-\frac{E}{RT}\right) \left[\frac{m_B}{V}\right] \left[\frac{m_C}{V}\right]$$

$$heat = h_0 + h_1T + h_nT^n$$

Reactions are used to simulate temperature transitions:

$$M \rightarrow S$$
 $S \rightarrow M$ T_{limit} T

Volumetric Expansion

$$V = \sum_{solids} \frac{m_s}{\rho_s} + \sum_{liquids} \frac{m_l}{\rho_l} + \gamma \sum_{gases} \frac{m_g}{\rho_g}$$

$$\gamma = 0$$
: solids & liquids

gases

material

$$\gamma = 1$$
: solids & liquids

gases

material

$$\gamma = \frac{\gamma_s \sum_{j=1}^{solids} \frac{m_s}{\rho_s} + \gamma_l \sum_{j=1}^{liquids} \frac{m_l}{\rho_l} + \tau \sum_{j=1}^{gases} \frac{m_g}{\rho_g}}{\sum_{j=1}^{solids} \frac{m_s}{\rho_s} + \sum_{j=1}^{liquids} \frac{m_l}{\rho_l} + \tau \sum_{j=1}^{gases} \frac{m_g}{\rho_g}}$$

Heat Transfer

The rate of transfer $Q = -kS \frac{\partial T}{\partial x}$

Material conductivity $k = \beta k_p + (1 - \beta)k_n$

$$k_p = \frac{1}{V} \sum_{c}^{comps} k_c V_c$$

$$k_n = \frac{V}{\sum_{comps} \frac{V_c}{k_c}}$$

Gas Transfer

The rate of transfer of gas
$$g$$
, $J_g = -\lambda \rho_g S \frac{\partial \left(\frac{m_g/\rho_g}{V}\right)}{\partial x}$

According to Boyle's law, $J_g = -\lambda \rho_g S \frac{\partial \left(\frac{\alpha(m_g/\rho_g)}{\alpha V}\right)}{\partial x} = -\frac{\lambda \rho_g S}{P^{def}} \frac{\partial (\alpha P_g)}{\partial x}$

$$\gamma = 0 : \alpha = const \implies J_g = -\frac{\lambda \rho_g S \alpha}{P^{def}} \frac{\partial P_g}{\partial x}$$

$$\gamma > 0$$
: $P = const$ \Longrightarrow $J_g = -\lambda \rho_g S \frac{P}{P^{def}} \frac{\partial \alpha_g}{\partial x}$

volume fraction of material

occupied by gases

Conservation Equations Are Formulated using Finite Elements

- Elements have rectangular shape.
- Elements are defined by component masses and temperature.

$$\frac{\Delta m_g^R}{\Delta t} = V^R \sum_{r=1}^{r \times ns} \theta_r^g rate_r^R + \lambda^{LR} \rho_g^{LR} S \frac{\frac{m_g^L}{\rho_g^L V^L} - \frac{m_g^R}{\rho_g^R V^R}}{\Delta x}$$

$$m^{R}c^{R}\frac{\Delta T^{R}}{\Delta t} = V^{R}\sum_{r}^{r\times ns}heat_{r}^{R}rate_{r}^{R} + k^{LR}S\frac{T^{L} - T^{R}}{\Delta x} + \frac{1}{2}\sum_{r}^{gases}c_{g}^{LR}(T^{L} - T^{R})J_{g}^{LR}$$

Boundary Conditions for 1-Dimensional Model

Beer-Lambert absorption

Surface flame:

$$\sum_{comps} \frac{J_c^B}{J_{flm}^c} > 1 \implies q_{rad}(t) = q_{rad}(t) + q_{flm},$$

$$h_{env} = h_{flm}, T_{env}(t) = T_{flm}$$

Conduction in Semi-Infinite Solid

Chemical Reactions

 $A \rightarrow PA$ $A + A \rightarrow PAA$ $B \rightarrow PB$ $B + A \rightarrow PB$ $[A]_0 >> [B]_0$

Diffusion from Thin Layer

Integration Parameters

Material:

 ρ =1000 kg/m³ c=500+3T J/kg-K k=0.2 W/m-K ε =0.95

Decomposition:

 $A=5\times10^{15} \text{ 1/s}$ E=250 kJ/molheat=-1000 J/g

Conditions:

 T_{init} =300 K q_{rad} =50 kW/m² thickness=5 mm

Effects of In-Depth Absorption and Charring

absorption coeff. = 3 mm⁻¹

1 Material \rightarrow 0.25 Char ρ_{char} =50 kg/m³ thickness: 5 \rightarrow 25 mm

Conclusions

- A versatile framework for numerical simulation of the pyrolysis and combustion of polymeric materials has been formulated.
- The 1-dimensional model has been implemented and tested by comparing the results of numerical calculations with analytical solutions.
- This model will be used to develop parametric descriptions that provide accurate prediction of materials behavior in fires.