

A Case Study: Evaluation of Flame Retardant Coatings for Aerospace Applications

John Harris

Material and Process Technology

Boeing Commercial Airplanes

MATERIALS DEVELOPMENT IN AEROSPACE

- → Materials being developed for aerospace applications must meet a large set of engineering requirements:
 - Flammability
 - Cost
 - Aesthetics

- Mechanical
- Weight
- Processing
- → Some requirements often work against others.

OPTIMIZING MATERIALS FOR AEROSPACE APPLICATIONS

- → What's the problem?
- Defining the best set of engineering requirements
- → Commercially available materials
- Optimal methods of characterization
 - · Flammability / environmental / physical durability
- → Development schedule/Cost

CASE STUDY: IN-SERVICE INSULATION BLANKETS

Problem:

- → In-Service Investigations
 - Flammability, contamination, aging
- Flammability testing
 - Q-tip, Bunsen burner, radiant panel
- Highly variable test results
 - Burn length/self-extinguishing time

Flammability properties impacted by aging and/or contamination?

SOLUTION STRATEGY

Reconstitute material flame retardant properties

- → Spray-on flame retardant (FR) coating
 - Compatible with customer process
 - _o Ease of use
 - Equipment compatible
 - Suitable for complex surface
 - Low material cost
 - Weight neutral with remove & replace

PHASE I: EVALUATE COMMERCIAL FLAME RETARDANT COATINGS

Engineering Requirements for coating:

- → Good adhesion
- → Flammability requirements
 - Low smoke & toxic gas emission
 - Radiant panel test
- → Physically durable and flexible
 - Consistent mechanical / flammability properties with aging
- → Water resistant and non-absorbent over time
- → Non-conductive and non-corrosive
- → Minimal weight impact
- > Relative ease of application and cure

INTUMESCENT COATINGS

- → Constituents
 - Acid source, blowing agent, and carbon source
- Advantages
 - Weight and volume savings
 - Competitive costs
 - Good insulation against static heat source
 - Commercially available
 - Hazmat/Toxicity
- Disadvantages
 - Non-durable intumescent foam
 - Non-uniform coating thickness
 - Equipment/process requirements

KEY TEST REQUIREMENT: RADIANT PANEL

Video Deleted

≤ 3 sec After Burn

≤ 3 in Burn length

CONSISTENT RADIANT PANEL RESULTS OBTAINED

PHASE I SUMMARY

Property Requirements met:

- Radiant panel & smoke emission requirements
- Water soluble & non-toxic
- HVLP spray application
- Non-conductive & non-corrosive
- Minimal weight impact

Property Requirements **NOT** met:

- Water resistant only after long cure (> 1 month)
- Loses some flexibility with aging
- Elevated temperature cure

PHASE II: USE 3 PART COATING SYSTEM TO COMPLETE PROPERTY REQUIREMENTS

Barrier coating (solvent-based)

Active coating (water-based)

Adhesion promoter (water-based)

Insulation blanket cover film

All 3 components applied separately with HVLP spray gun or brush

- → Adhesion promoter
 - Latex-based, flame retarded adhesive
- Active coating
 - Spray-on Intumescent
- → Barrier coating
 - Provides resistance to moisture and durability
- Coverage/configuration control addressed by coloration

Barrier Coating Evaluations

Tough meeting both water resistance and radiant panel

ENCOURAGING RESULTS WITH ACRYLIC BARRIER

- → Quick drying, completely water resistant, & flexible
- Consistent Q-tip and flaming block test results

FR-COATED INSULATION BLANKETS: POST-FIRE

3 PART FR COATING CRITICAL ISSUES

- Active coating: Elevated Temperature Cure is costly
 - New version FX-100 cures at room temperature
- Barrier coating: Inconsistent radiant panel test results

PHASE II SUMMARY

- Acceptable coating properties
 - → Water resistance
 - → Durability
 - → Non-conductive / non-corrosive
 - → Cost / weight
 - → Smoke density & toxicity
- Unacceptable coating properties
 - Inconsistent radiant panel test results
 - → Elevated temperature cure
 - Multiple spray processes

PHASE IIITWO-PART FR COATING SYSTEM

Barrier coating: water or solvent based

Active coating: water-based

Insulation blanket cover film

HVLP or Brush Application

- Consistent customer pull for key coating properties
 - Easy / flexible application method
 - Short cure times / no elevated temperature cure
 - Haz Mat concerns: Low toxicity
- Yey Engineering requirements
 - Radiant panel, smoke density & toxicity requirements
 - Durable / flexible / low aging impact
 - Water resistant

Radiant Panel Testing Results: 2-Coat System

> Spray-on coating system: inconsistent radiant panel results

Video Deleted

BARRIER COATING ISSUES

- → Water-Based formulations
 - Low toxicity
 - Meets radiant panel requirements
 - Questionable water resistance
- → Solvent-based formulations
 - Good water resistance
 - Flexible
 - Inconsistent radiant panel results
 - o Entrapped volatiles ?

REFORMULATED BARRIER COATING → Consistent Radiant Panel Results

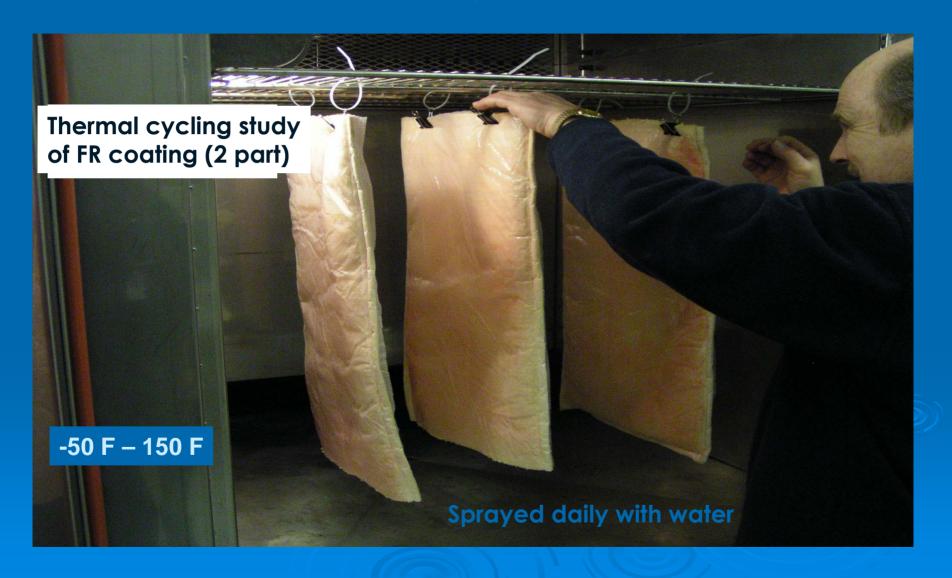
Video Deleted

COATING FLEXIBILITY EVALUATION

Twist / Flex Test Method

COATING FLEXIBILITY EVALUATION

BOEING


Both insulation blankets coated at the same time with 2 coat system

10,000 cycles / 180° Testing

Control

ACCELERATED AGING: 26,000 FREEZE-HEAT CYCLES

AGED COATINGS EXHIBITS CRACKING

TWO PART FR COATING SUMMARY

Engineering requirements met:

- → Ease of application, cure temp/time
- → Non-conductive, non-corrosive, water resistance
- → Smoke density & toxicity, radiant panel
- → Low weight, cost

Engineering requirements NOT met:

- Cracking / chipping still an issue
 - . Twist and flex
 - Environmental aging

FUTURE DEVELOPMENTAL WORK

- > New formulations:
 - Barrier
 - Active
- >> Further research with suppliers
- → Single application coating development