New Transparent OSU-Compliant Polycarbonate Copolymers

LEXAN* FST

International Aircraft
Fire & Cabin Safety
Research
Conference

Nov 1, 2007

Transparent OSU-Compliant Polycarbonate Copolymers

Gary Davis, Moitreyee Sinha, Mike Takemori, <u>Kate Jackson</u>, Bill Richards, Rob Colborn, Amitabh Bansal, Irene Dris

GE Global Research

Paul Sybert, Jianbo Di, Constantin Donea, Randy Myers, Ralph Buoniconti SABIC Innovative Plastics

Karen Hills, Gregory Bell

The Boeing Company

Special Thanks To

William Hughes Technical Center, Federal Aviation Rich Lyon, Stas Stoliarov, Rich Walters

Herb Curry Lab
Scott van Wormer

Boeing Labs

Vasan Sundaram, Hank Lutz, Joel Peterson, Pete Guard, Jim Griffing, Kjersta Larson, Steve Moffitt

Plastics in Aircraft Applications

Highly regulated market

FST Tests Required by FAA & OEMs

Ignitability,
Melting/Dripping

60-sec vertical Bunsen burner

6" burn length

15-s specimen extinguishing time

3-s drip extinguishing time

Heat release

Ohio State Univ calorimeter

65 kW • min/m² total (during first 2 min)

65 kW/m² peak rate (during first 5 min)

Smoke release

National Bureau of Standards smoke chamber

specific optical density < 200 (during 4-min test)

Toxicity (OEM): CO, HCN, HF, HCI, SO2, NOX

OSU 65/65 most challenging requirement

OSU Test

Existing commercial materials all opaque: Polyetherimide, polysulfone

Need for transparent OSU compliant polymer

New Transparent Polycarbonate Copolymers

t = 0.08"
for aircraft dust
cover application

Heat release capacity & char forming controlled at molecular level

OSU Performance: Flame & Heat Applied

t=0

Heat & Flame Applied

OSU Performance: Start of burning & char

t=30 sec

Key factors:

- Low fuel value
- Formation of char
- Rheology

Sample starts to char with low heat release

OSU Performance: Full Burning

t=2 min

Key factors:

- Char layer forming
- Char layer needs good integrity
- Low sagging & running
- No exposure of fresh fuel

Polymer composition and structure key to char layer integrity

OSU Performance: Burning stops

t=5 min

Char layer slows burn rate & holds sample in place

First halogen-free transparent materials to meet OSU

FR Performance of New Copolymers

Validated at Boeing labs

FR Performance of New Copolymers

Thickness (mm)	Peak HRR (kW/m2)	2-min HR (kW- min/m2)	NBS Smoke Density (4Dm)			
CLEAR/TRANSPARENT						
1.5	37	25	6			
1.5	39	29	6			

ource: Non-halogen Fire Resistant Plastics for Aircraft Interiors, Rich Lyon, FAA, Oct 2007

Smoke, Vertical Burn, Toxicity

Smoke Density (3 sample avg.)

60 Second Vertical Burn (3 sample avg.)

Smoke		
Generation	Max	New Mat.
(Ds) @ 4 min	200	23.15

Toxicity

Component	Max (ppm)	New Mat.	
HF	200	1	
HCL	500	0	
HCN	150	1	
H2S	-	0	
Nox	100	1	
HBr	-	0	
PO4	-	0	
SO2	100	0	

PC Mat Sys 1

Vertical Burn	Max	New Mat.	
Extinguishing Time	15 sec	2.3	
Burned Length	6 inches	0.6	
Drip Extinguishing Time	3 sec	no drips	

Exceeding FAA requirements

Beyond Fire, Smoke, Toxicity Performance

Optical

Total Transmission Haze Color/Yellowness

Mechanical

Tensile Flex Impact

Physical

Density
Specific Gravity
Molecular Weight

Aging

UV Resistance Temp/Humidity Cycling

Thermal

Glass Transition CTE HDT

Processing

MFI
Capillary Rheology
Dynamic Rheology

Solvent Sensitivity

Discoloration Crazing

Abrasion Resistance

New copolymers extensively tested across mechanical, chemical, optical and rheological properties

Injection molding, sheet and film extrusion Thermal forming, profile extrusion...

Extruded sheet of new copolymer (GE Plastics)

Visible Spectrum

Light transmission close to BPA-PC

Color Space

Low color & high transmission expand color space

Gardner Impact & Reverse Scratch

Production- quality coated sheets with varying levels of UV protection evaluated

Boeing Specification = No scratch 80 in-lbs min/ Scratched reverse impact 26 in-lbs min

New material = no scratch 172-210 in-lbs/ Scratch reverse Impact 144-170 in-lbs

MRAC = no scratch 174 in-lbs/ Scratch reverse impact 170 in-lbs

Strong performance, well above minimum requirements

Physical Properties

PROPERTY MECHANICAL	Units	Method	PC	Transparent OSU Resin
Tensile Stress at Yield, 50 mm/min	MPa	ASTM D 638	62	74.2
Tensile Stress at Break, 50 mm/min	MPa	ASTM D 638	66	72.8
Tensile Eongation at Yield, 50 mm/min	%	ASTM D 638	7	6.9
Tensile Elongation at Break, 50 mm/min	%	ASTM D 638	110	99
Tensile Modulus, 50 mm/min	MPa	ASTM D 638	2,351	2,510
Hexural Modulus 1.27 mm/min	MPa	ASTM D 790	2,344	2,480
Hexural Stress@Yield, 1.27mm/min	MPa	ASTM D 790	93	116
IMPACT				
Notch Izod Impact, 23°C	J/m	ASTM D256	801	719
THERMAL				
HDT, 0.455MPa	°C	ASTM D 648	138	131
HDT, 1.82MPa	°C	ASTM D 648	127	120
Tg	°C	DSC	150	140
PHYSICAL				
Melt How Rate, 300°C/1.2 kgf	g/10 min	ASTM D 1238	10.5	6

Polycarbonate-like physical properties

Chemical Resistance

Production- quality coated sheets with varying levels of UV protection evaluated

✓ Solvent Sensitivity (per BMS8-246):

All pass

✓ No visible response to acetone, toluene, and IPA

Chemical resistance better than BPA-PC

Uncoated PC Base for MRAC sheet

Pass: IPA

Uncoated LEXAN* FST

Pass: Ace, Tol, IPA

Hardcoat Adhesion

✓ Adhesion- Wet & Dry:

All perform excellently (10s on scale of 0-10)

Ground-Air-Ground Cycling: All pass

Numerical Ratings are per Boeing BSS7225 w Class 5 Cross-hatches (6 x 3 mm at 450)

Worse 5

No coating left on panel

Weathering

 $\label{eq:energy} Energy,\,kJ$ Color change during Xenon Arc weathering of transparent OSU formulations

Weathering resistance good compared to current product

Hard Coating

- Good adhesion with standard BPA-PC hard coat
- Improved scratch resistance
- Same fire performance
- Good light transmission
- Works with commercial coating for BPA-PC

"Drop in" for existing process

Special Thanks To

Goodness Gracious Great Balls of Fire!!!

Gary "Hell Fire" Davis

Acknowledgements

Tom Shaginaw, Airplane Program Leader, GE Global Research Bill Kernick, Business Program Manager, GE Global Research John McDermott, Lab Manager, GE Global Research Greg Chambers, Global Technology Leader, GE Global Research Rich Decristofaro, Legal Counsel, GE Global Research

Tammy Rucker, Product Manager, Sheets, GE Plastics **Benny David**, Industry Manager, Aerospace, GE Plastics **Gina Harm**, Market Director, Transportation, GE Plastics **Paul Discuillo**, Industry Manager, SF&S, GE Plastics

Mike Vanderwel, 787 Program Leader, Boeing Vanessa Gemmell, 787 Program Leader, Boeing Don Retallack, 787 Program Leader, Boeing Dan Cushing, Global Partners, Boeing

