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SCREENING PLASTICS FOR FLAMMABILITY

PROBLEM
Need Small Scale (milligram) Screening Test for FR Additives to
Reduce Development Costs and Accelerate Discovery.
APPROACH
* Measure Properties of Complete Combustion using Microscale
Combustion Calorimetry.
» Use a “Burning Efficiency” to Account for Incompleteness of
Flaming Combustion.
« Account for Uncertainty Using Probability.
RESULTS
CONCLUSIONS



THE GOAL OF THE FR ADDITIVE APPROACH
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FLAME RETARDANTS WORK IN TWO WAYS

Gas Phase

Activity Heat Loss

From Surface

= Heat
Resistance

Fuel Gases From Plastic

Heat from
Condensed Phase Flame

Activity

Need to quantify the efficiency of these modes of action



APPROACH

1) Reproduce elements of flaming combustion
In non-flaming test

Gases analyzed for residual oxygen
to compute heat release rate

2) Measure thermal combustion
properties of materials

[ﬁ<— 3) Relate thermal combustion
properties to fire and flame

tests using deterministic
Microscale and probabilistic models

Combustion
Calorimeter

— Sample -J

Flaming
Combustion
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AUTOMATED / HIGH THROUGHPUT MCC

Combustor with oxygen consumption
attached to TGA with automated sampling

Capable of = 50 tests/day



Designation: D 7309 - 07

Standard Test Method for
Determining Flammability Characteristics of Plastics and
Other Solid Materials Using Microscale Combustion

Calorimetry’

1. Scope
.1 This test method, which is similar to thermal analysis
technigues, establishes a procedure for determining flamma-
hility characteristics of combustible materials such as plastics.

1.2 The test is conducted in a labogatory environment using
controlled heating of milligram specimens and complete ther-
mal oxidation of the specimen gases.

1.3 Specimens of known mass are thermally decomposed in
an oxygen-free (anacrobic) or oxidizing {acrobic) environment
at a constant heating rate beteween 0.2 and 2 Eis.

1.4 The heat released by the specimen is determined from
the mass of oxygen consumed to completcly oxidize (combust)
the specimen gases.

1.5 The rate of heat released by combustion of the specimen
gascs prodeced during controlled thermal or thermoxidative
decompaosition of the specimen is computed from the rate of
oy ‘..-.u CONSUmpLien.

v The specimen temperatures over which combuostion heat
leased are measuned.

7 The mass of specimen remaining after the test is
measured and used to compute the residual mass fraction.

1.8 The specimen shall be a material or composite material
in any form (fiber, film, powder, pellet, droplet). This test
methad has been developed to facilitate material development
and rescarch
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THERMAL COMBUSTION PROPERTIES (MCC)

Heat Release Rate (J/g-K)
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Total Heat Release, HR (J/g)
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FORCED AND UNFORCED COMBUSTION

meter (ASTM E 1354)

Vertical Flame Test
(ASTM D 3801)

Unforced
Combustion

Forced
Combustion

Oxygen Index (ASTM D 2863)



FLAMING COMBUSTION: Gas Phase Chemistry

Complete Combustion (Oxidation) of Fuel Gases

900 T Microscale
CcHhOmNnXx tm OZ —> COZ + HZO + I\|2 + HX Combustion
Fuel Gases 10 sec Calorimetry

Incomplete Combustion of Fuel Gases in Diffusion Flame

Flame
CcHhOmNnXx t N OZ | COZ + HZO + N2 + HX } Fires and

Fuel Gases
+ CO + C;H, + soot Flames

n O,
m O,

Flaming Combustion Efficiency, y = <1



FLAMING COMBUSTION: Condensed Phase Physics

Char Slope = AT o Heat Transfer Rate
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STEADY BURNING MODEL: Macro

Heat Release Rate (HRR) for Steady Burning:

OHS ., ) H. . ., Cone
HRR = ZL—Q(qflame _qrerad) T ZL—H Uext Calorimeter
g 9

~ — _ J Data

HRR, HTP H? = Heat of Combustion

Of Fuel Gases

¥ = Combustion Efficiency
in Flame

0 = Heat Transfer Efficiency
at Surface

HRR (kW/m2)

4" e (KW/m?)
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Rate:
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FORCED FLAMING COMBUSTION

Fire Response



HEAT RELEASE RATE: Macro Vs. Micro

At large external heat flux, HRR o 7,

Peak HRR in Cone Calorimeter

(kW/m2)
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® Natural Plastics

O Micro-composites

@ Nano-composites

O GFRP (PA6, PBT, PC, PPS)
® PC/ABS Blends

O FR Compounds




OSU HEAT RELEASE RATE: Macro Vs. Micro
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UNFORCED FLAMING COMBUSTION

Flame Resistance



FLAME EXTINCTION CRITERIA

Flame Extinction Occurs at Critical HRR:

100 kW/m2 (Downward Burning)
HRR* ~
60 kW/m2 (Upward Burning)

® MACRO Extinction Criterion for Flame Tests

HRR*
(q”ﬂame' q"Ioss)

HRP <

® MICRO Extinction Criterion for Flame Tests

*

= N¢

o . MaHRR'
C

(q"flame' q"rerad)




FLAME RESISTANCE TEST (ASTM D2863)

Limiting Oxygen Index (LOI) = [0O,*]
HRR* = 100 kw/m? (downward burning)
0 1ame = [02] =2 [O] Oferad = O Tmax ~17KW/m*
a = 1.4 kW/m2-%0,

_ hg/ATIO :(Zk.J/ g)/(5OK):4OJ/ g-K
X0 y4% 20

My

LOI EXTINCTION CONDITION:

" HRR" 7,/ a -
[O;] — qrerad_|_ g 129 + 2-8k‘]/g K

N (%)
a R 0 x e



EFFECT OF BURNING EFFICIENCY ON L.O.I.

Limiting Oxygen Index, % v/v
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FLAME RESISTANCE: UPWARD BURNING

Comparative Burning Characteristics of Plastics in
Vertical Position (UL 94 V or ASTM D 3801):

HRR* = 60 kW/m?

q”rerad = CHF ~ ¢oT ;

max

q /;‘Iame ~30 kW/m?

_ hy/ AT, (2k3/g)/(50K) 403/ g-K
44 x0 70
UL 94 V EXTINCTION CONDITION:

Ty

HRR™ 7, _24MWJImTPgK™Y

77 S 4 ~ 4
- %0 (qﬂame - SGTrﬁax ) Xe(qflame - SGTéax )



EFFECT OF

¥0 AND T
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EFFECT OF BURNING EFFICIENCY ON UL 94

UNCERTAINTY DUE TO BURNING EFFICIENCY
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ODDS OF BURNING AND HRR

Assume that Odds of Burning is related to HRR

and probability of burning, pg

3
Odds of _ Ps {HRR}

Burning 1 - Ps HRR*
Then,
(HRR/HRR*)’
Pe ~

1 + (HRR/HRR*)’

HRR

HRR* B
10 0.999
5 0.99
2 0.89
1 0.5

1/2 0.11

1/5 0.008

1/10  0.001




ODDS OF BURNING AND THERMAL COMBUSTION PROPERTIES

HRR = Xen—cq’r’mt ; HRR* = T]—Cq’::ritical ~ 60 kW/m2
ng ng

Then,

3 3 , 3 3/%6
P :(HRRj:(Xencj[qnet} _ [Xgncj
1- pB HRR ™ 113 q,c,:ritical 11’5

And:

o, = (10 ne/Mg)> ™
1+ (10 / mg)* ™

Depends only on burning efficiency (x6)
and heat release capacity (77, )

--------
IETRE



MEASURE PROBABILITY OF BURNING, pg

®=Burn (HB/NR/V-2/V-1) O= No Burn (V-0 /5V)

— HRC bin width of = 50 J/g-K gives statistically valid sample (n > 5)

» «— pg = Fraction of Burn
Results in HRC Bin
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Probability of Burning, pg
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CONCLUSIONS

® Deterministic Models using thermal combustion properties
appear adequate for forced flaming combustion.

® Probabilistic Models are required to reconcile MCC data with
flame resistance tests because

 Intumescence, charring (0)
» Gas phase inhibition (y)
« and Dripping

Incomplete
combustion in flame

are comparable in magnitude and effect to thermal combustion
properties at extinction.



