Flammability Properties of Polymer Nanocomposites

Takashi Kashiwagi¹, Xin Zhang², Rob Briber²

¹Department of Fire Prevention Engineering University of Maryland

&

Fire Research Division, NIST

² Department of Materials Science and Engineering
University of Maryland

Partially supported by FAA Tech. Center under 02-G-022

- New FR Approach
 - Nanocomposites: particle-filled polymers where at least one dimension of the dispersed particle is nanometer scale.
 - Layered silicate (clay): large aspect ratio 1D
 - Tube : large aspect ratio 2D
 - Sphere: aspect ratio of 1 3D

Exceptional physical properties.

- How about their FR performance?

 If effective, what are the effects of the shape of nanoparticles on FR performance?
- If effective, what are their FR mechanisms?

Measurement of Flammability Properties

Cone Calorimeter

 Oxygen consumption measurement under external thermal radiation (up to 100 kW/m²), ignition delay time, heat release rate, CO, soot, sample mass loss rate, ...

• Radiative Gasification Device

Mass loss rate measurement in **nitrogen**

Effects of Shape of Nanoparticles

• Sphere - Nano silica particles

Sample Preparation of Silica-PMMA

- 1. Mix 14 g of MEK-ST(30% by weight colloidal silica with average 12 nm diameter in MEK, Nissan Chemical) in 40 mL of MMA(Sigma-Aldrich).
- 2. MEK was removed using a rotary evaporator at 62 °C in low vacuum.
- 3. Additional MMA was added and mixed in a sonic bath.
- 4. BPO (1.7% by weight of MMA) was added to make free radical polymerization.
- 6. The sample was then transferred to a vacuum oven at 80 °C for 72 hours.
- 7. Control sample was made by substituting MEK-ST with MEK and followed exactly the same procedure.

Kashiwagi, et.al. J. Apply. Polym. Sci., 89, 2072, 2003.

Effects Shape of Nanoparticles

- Plate Clay particles
- UBE 1015 series of PA6 with 2 % and 5 % MMT.

TEM

Confocal Microscope

Selected video images at 100s, 200s, and 400s in nitrogen at 50 kW/m².

Park, SC, 2007

Effects of Shape of Nanoparticles

• **Tube** – Carbon nanotubes

• Effects of type of nanotubes ?

Sample behavior during gasification in nitrogen at 50 kW/m²

PMMA/CNT(0.5 %)

In Cone Calorimeter at 50 kW/m²

Residues collected after nitrogen gasification tests at 50 kW/m²

Effects of aspect ratio?

Fig. 11. The effects of aspect ratio of MWNT on the relationship between mass loss rate peak and mass concentration of MWNT.

Time (s)

FR Mechanisms

SWNT(0.5%)

MWNT(1%)

CNF(4%)

SEM image of the residue of PMMA/SWNT(1%) collected after nitrogen gasification indicating a randomly interlaced structure.

Any relationship between viscoelastic property and FR

Requirements for high FR polymer nanocomposites - to form network structure

- Good dispersion of nanoparticles
- High aspect ratio of nanoparticles
- Need minimum concentration of nanoparticles
- High Mn of resin

- Possible Screening Test
- Viscoelastic measurement to determine the formation of jammed network of initial sample

- Flammability of Polymer nanocomposites:
- reduce peak heat release rate
- do not reduce total heat release
- need further reduction in heat release rate
 How ?
- 1. Nanocomposites plus existing FR additives
- 2. Enhance char formation (our approach)
 - Combination of clay with catalysts
 - Special functionalization on clay surface

SAN/clay/ZnCl₂

- SAN(PS/PAN(75/25))
- Solvent (THF) blending
 - 18 g of SAN in 200 ml of THF
 - 1 g of cloisite 20A and 0.6 g
 of ZnCl₂ in 100 ml of THF
 - Sonication and stiring
 - Drying and annealing
- SAN, SAN/20A(95/5),
 SAN/ZnCl₂(95/3),
 SAN/20A/ZnCl₂(90/5/3),
 SAN/20A(90/10),
 SAN/20A/ZnCl₂(87/10/3)

 $SAN/ZnCl_2(97/3)$

SAN/20A/ZnCl₂(87/10/3)

Pictures of residues of SAN with additives collected after gasification tests at $50 \ kW/m^2$ in a nitrogen atmosphere

Clay modification background

Diethylphosphatoethyl triethoxysilane

•P containing silane improved the thermal stability of the nanocomposites

Normalized Sample Mass in Cone Calorimeter at 50 kW/m²

Acknowledgement

Richard Harris, John Shields, Jeffrey Gilman, Alex Morgan (currently Dayton Research Inst.), Tom Ohlemiller, Joe Antonucci, Sam Kharchenko, Jack Douglas – NIST

Fangming Du, Karen Winey – University of Pennsylvania

Jenny Hilding, Xing Ying, Eric Grulke – University of Kentucky

Bani Cipiriano, Srini Raghavan– University of Maryland