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Combustor burn through

FAR § 25.903(d)(l) requires that the hazard from a 
combustor case burn through must be minimized. 



Combustor burn through

• Traditionally flame breakout shields have been fabricated 
from tantalum rich materials. 

• Develop a realistic small scale test for assessing 
performance of new materials alongside traditional methods

• Stages in test development

Decide design fire

Design and assemble suitable test rig

Validate test rig conditions

Test materials and shield configurations



Combustor burn through ‘design fire’

FAA – AC 20 -135 powerplant installations provides 
guidance

Special fireproof requirements for engine case burn through

Location of protection same as in real installation

Minimum flame temperature 1920 K

Flame emerging through 1’’ orifice

Source conditions same as real combustor chamber

Test duration – 3 minutes



High pressure jet structure (1)
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Proposed jet structures
(from N L Messersmith and S N B Murthy, Purdue Univ.)



High pressure jet structure (3)
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Jet operating conditions

Nozzle diameter 25.4 mm

Chamber stagnation
pressure Up to 70 bar

Air mass flow rate 2 kg/s

Fuel Methane or kerosene 
(stoichiometric)

Running time > 3 minutes



Rig implementation (1)

• 1 Te air - 4 m3 air storage at 207 bar

• Air delivery up to 2 kgs-1

• Dual fuel – methane or kerosene

• Rolls-Royce Tay can modified to allow for reduced flow rates

• Standard ignition system

• Software control of combustion conditions

• Mass flow controlled operation



Specification of test conditions

• Direct measurement of pressure in combustor

• Compute stagnation temperature
1. Compute total mass flow from choked flow at nozzle and defined conditions

2. Measured heat loss to water-cooled nozzle (60kW) factored in

3. Fuel flow computed on basis of heat required to achieve target stagnation 
temperature assuming stoichiometric exhaust composition

4. Compute specific heat of exhaust using fuel flow rate from (3)

5. Recompute fuel flow

6. Estimate exhaust stagnation temperature from energy balance:
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Burn through rig -shematic
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Combustor unit



Rig implementation (1)



Rig implementation (2)



Rig implementation (3)



Rig implementation(4)



Rig calibration



Combustor conditions
Combustor Pressure
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Far-field impingement(1)



Far-field impingement(2)

Pressure - Horizontal Profile
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Pressure - Vertical Profile
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Far-field impingement(3)
Temperature Plot
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Far-field impingement(4)

Heat Flux
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Far-field impingement(5)

• IR Imaging for temperature measurement

• Difficulty is fixing emissivity

• Here paint of known emissivity is used



Near-field impingement(1)

75 mm impingement

42 s burn through



Near-field impingement(2)

Video Deleted



Near-field impingement (3)
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Measurement difficulties in high pressure, 
hot jets:

• Intrusive devices
shock structures
unrepresentative conditions

• Radiation losses
• Protection of probes
• Introduction of seeding
• Wide range of temperature, velocity, density



Non-intrusive measurement 
techniques

• Laser Doppler V systems available frequency limits
any CW laser seeding
strong signal particle following

multiple beam

• PIV V “ “

• Spontaneous T any pulsed laser weak signals
Raman single beam temperature limit

well documented

• CARS T improved signal multiple beam
strength temperature limits

• Rayleigh V, T, ρ single beam narrow line-
strong signal widths
wide limits



Rayleigh scattering features

• Molecular scattering 
accurate flow following

• Narrow band scattering centred on probe laser wavelength
probe laser is single axial mode

•Velocity information contained within band position
doppler shift

•Temperature information contained within band shape
doppler broadening

•Scattered signal strength related to molecular density    



Rayleigh scattering details (1)
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Rayleigh scattering details (2)
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Rayleigh scattering tests
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Next steps

• Rig gives reliable and steady simulation of burn through conditions 
at pressures up to 60-70 bar. Run times > 3 minutes @40 bar.

• Now concentrate on near-field < 250mm.

• Impingement plates show evidence of hot and cool rings.

• Main problem is measurement and validation of test conditions.

• Non-intrusive laser measurements are the best way forward.

• Rayleigh scattering offers possibility of good signal 
levels in hostile jet environment.

• Temperature, velocity and density available from 
single measurement. Sheet illumination a possibility
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