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Developed Simulation Tool

® Based on Transport Model Egs. of the Conservation
of Mass, Momentum, and Energy of Air / Agent
Flows.

® Analytical Tool to Guide Design / Installation of FireX
Systems for Engines and APUs

® Performance Analysis of FireX System Designs
using Halon and Replacement Agents at Flight
Conditions of Interest.

® Saves Time and Cost by Complementing FAA
Certification Tests.
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Environmental and Physical Properties

IAFCSRC2007

(Halon 1301 and Alternate FireX Agents)

Thermodynamic Properties Halon- 1301 | HFC-125 CF,l HFC-227ea
Chemical Formula CBrF, C,HF, CF,l CF,CHFCF,
Molecular weight (kg/kg-mol) 149 120 196 170
Ozone Depletion Potential (ODP) 16 0 0.0002 0
Global Warming Potential (GWP) 5,600 2,800 5 2900
Atmospheric Lifetime (years) 65 33 5 Days 36.5
NOAEL?, vol % 5.0 7.5 0.2 9.0
LOAEL!, vol % 7.5 10.0 0.4 10.5
Boiling point (°C) -57.8 -48.6 -22.5 -16.3
Critical Point (°C) 67.0 66.3 122 102
Critical pressure (Mpa) 3.95 3.62 3.882 291
Saturation pressure (Mpa)? 1.61 1.38 0.49 0.453
Critical density (kg/md) 745 571 872 621
Liquid density (kg/m3)? 1551 1190 2,106 1386
Liquid Specific heat ratio, (kJ/kg K)? 0.881 1.358 0.43 1.177
Latent Heat of Vaporization, (kJ/kg)® 111 160 106 131
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Vented Airflows and Concentration Histories

During Fire Suppression Process
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FAA AC 20-100: If Halon 1301 is used as the fire
extinguishing agent, the minimum agent concentration
Is 6 % by volume for a minimum of 0.5 seconds for all
12 concentration probe locations, simultaneously.
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Fire Extinguishing and Simulation Processes
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Analysis of Agent Flow at Injection Nozzle

50
FireX Agent mass, Bottle Vol., P (Charge),
Design T (Charge), T (Test), D (Pipe), L (Pipe) 40
d (Nozzles) §
Data E 1 Halon 1301
f 30: HFC-125
EH CF3I
E
2
. =
FireX System
Analysis
(Hflowx)
161
] Halon 1301
$ 1.4 HFC-125
;c'n 1 CF3l
= 1.2
Molecular weight, liquid g ]
Agent density, vapor enthalpy, liquid %;; E
property enthalpy, latent heat of 2 o
) vaporization, vapor heat 2 o6l
i [ h g 0.6
Correlation capacity, liquid heat capacity, B
Equations Henry’s law constant, liquid =
viscosity, vapor viscosity, °-Z;W
surface tension, partial specific P
volume of N, in liquid agent t, sec
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CFD Models for Agent Injection Conc.

Propagation in a Vented Compartment

Discrete Agent Droplets Air / Agent-Vapor Mixture

Lagrangian Model Egs. Eulerian Model Egs.

e Mass Transport Eq. e Mixture Mass Continuity Eq.
(Evaporation) _ * Mixture Momentum Egs.

e Momentum Transport Egs. 2vay coupling * Mixture Energy Eq.
(Trajectories)

e Species Transport Eq.

e Energy Transport Eq.

(Heat Transfer) e Mixture Turbulence Model

Egs.

o _ Injector
Liquid / Gas Mixture Jet nozzle

from Injector Nozzle
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Compartment Geometry and CFD Meshes

Injection nozzles and external
engine case are not shown.
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Steady-State Analysis of Airflow Inside
Engine Core Compartment

Inflow Boundary Conditions

Streamlines
Airflow Sources

Pre-cooler

Equipment
Cooling

HPT ACC
LPT ACC
Pipe Leakages

Core Leakages

Fan Leakages

Front View Side View

IAECSRC2007 @”ﬂf’” (4



Boundary Conditions for Injection Nozzles

& 0

Halon Mass = 22 Ibm
Bottle Vol. = 800 In3

P (Charge) = 825 psia
T (Charge) = 70 °F

T (Test) =70 °F
L (Pipe) =80 Ft
D (Pipe) =3/4 In
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FireX
System
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Unsteady Analysis of Air / Agent Flows

(Flow Physics Models)

Simulation Models / BCs

Conditions

airflow boundary conditions

same as steady-state
boundary conditions

agent injection BCs

Hflowx predictions

Spalart-Allmaras

turbulence Model 1-Eq. model
density of vapor agent ideal gas law
KHRT model

liquid droplet break-up
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agent injection type for
Discrete Particle Model

surface injection
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Unsteady Analysis of Air / Agent Flows

(CFD Solution Scheme)

time-marching scheme

2nd—grder implicit

marching time-step

0.1 ~ 10 msec

iterations per DPM calculation

20

discretization scheme

2nd —order upwind

calculation precision

double-precision

under-relaxation scheme

all transport equations

buoyancy / gravity effects

yes
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Predicted Unsteady Concentration Distribution
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Agent Concentration / Mixture Temperature
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Concentration / Mixture Temperature

t =6.30 sec
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Injection Nozzles / 12 Probes Locations

Front View RHS View
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Halon 1301 Concentration Histories — Casel

Bottle Temperature = 70 °F, Test Altitude = Ground
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% Vol =100 f, /[f, + (1 -f,) (M M,)]
f, = Mass fraction of agent vapor

M, , M,= Mol. weights of agent vapor and air
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Halon 1301 Concentration Histories — Case 2
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Important Factors for Accurate Simulation

® Improved flow physics model for discharging and flashing
agent jet flow from injection nozzle.

® Accurate boundary conditions for all airflow sources.

® Accurate geometry modeling inside engine core
compartment.

® Refined discretization of CFD mesh and computational
time step in simulating agent jet flows during injection
period.

® Higher number density and poly-dispersed size groups in
modeling discrete liquid agent droplets at injection nozzles.

® Accurate thermodynamic properties of agent over a
broader range of T and P.
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Conclusions

® A simulation method for predicting fire extinguishing agent
concentration in engine core and APU compartments has
been developed.

® Capabilities of the methods have been demonstrated by
validation analyses of fireX tests of engines.

® Predicted concentration histories inside engine core
compartment were well correlated with certification test data.

® Effective simulation factors for improved prediction accuracy
are identified.
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