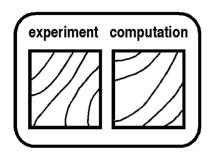
# Selection of Validation Metrics for Aviation Seat Models

Presented to: The Fifth Triennial International

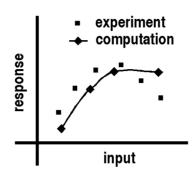
Aviation Fire and Cabin Safety

Research Conference

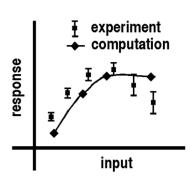
By: David Moorcroft, FAA CAMI


Date: Oct. 30<sup>th</sup>, 2007

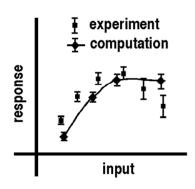



### **Background**

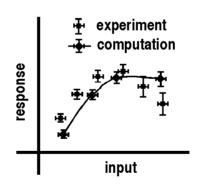
- With the increased use of numerical models for seat design and certification, there is a fundamental need to show that the model is an accurate representation of the real world.
  - A process called validation.
- Validation metrics calculate the error between simulation and experimental results.
- Specification and use of validation metrics is important because different error metrics give different scores for the same time-history pairs.
- Need an automated and consistent procedure.


# **Sequence of Validation Metrics**

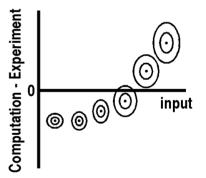



(a) Viewgraph Norm




(b) Deterministic




(c) Experimental Uncertainty



(d) Numerical Error



(e) Nondeterministic Computation



(f) Statistical Comparison

Trucano, et al 2002

#### **Overview**

- Quantitative curve shape metrics:
  - Three components: peak, phasing, and shape.
  - Components sometimes combined.
  - Need consistent values:
    - If 10% magnitude (peak) error is "good", a 10% shape error should also be considered "good".
- Results should be consistent with Subject Matter Expert (SME) opinions.
- Increased use of metrics, but selection rationale is rarely specified.

#### Goal

Evaluate curve shape metrics with multiple methods.

 Define selection criteria (rationale) for the choice of a curve shape metric that is appropriate for the aviation seating community.

#### **Evaluation Methods**

- Comparison to Idealized Waveforms
  - Magnitude only
  - Phase only
  - Error at high magnitudes vs. low magnitudes
- Comparison to Head Acceleration Time History and HIC
- Ability to Discriminate Curves
- Comparison to Subject Matter Expert Opinions

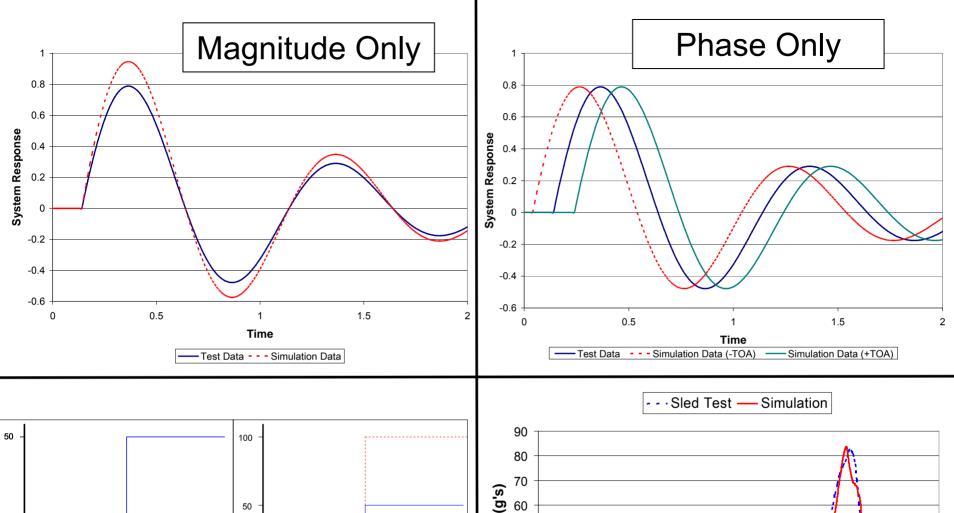


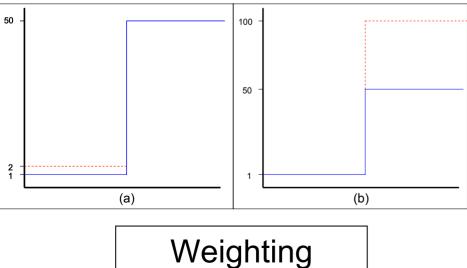
# 4 Curve Shape Metrics Evaluated

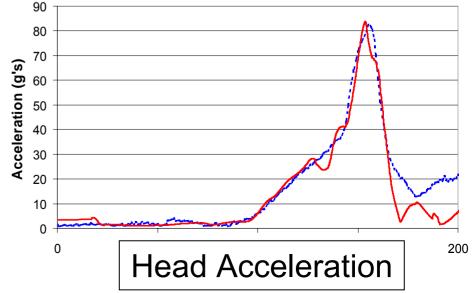
#### Sprague and Geers (S&G)

- General purpose curve shape metric
- Implemented in a spreadsheet

#### Weighted Integrated Factor (WIFac)


- Automotive curve shape metric
- Implemented in a spreadsheet


#### Global Evaluation Method (GEM)

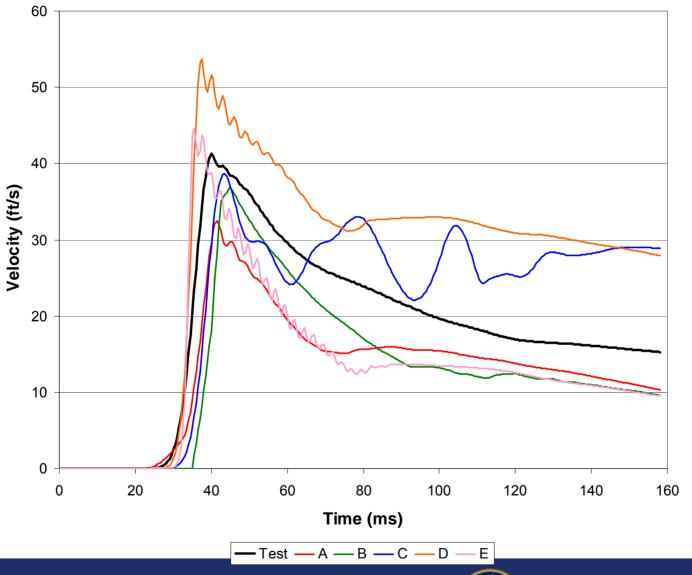

- Automotive curve shape plus peak and timing
- Requires ModEval (stand alone program)

#### Normalized Integral Square Error (NISE)

- Biomechanics curve shape plus magnitude and phase
- Implemented in a spreadsheet







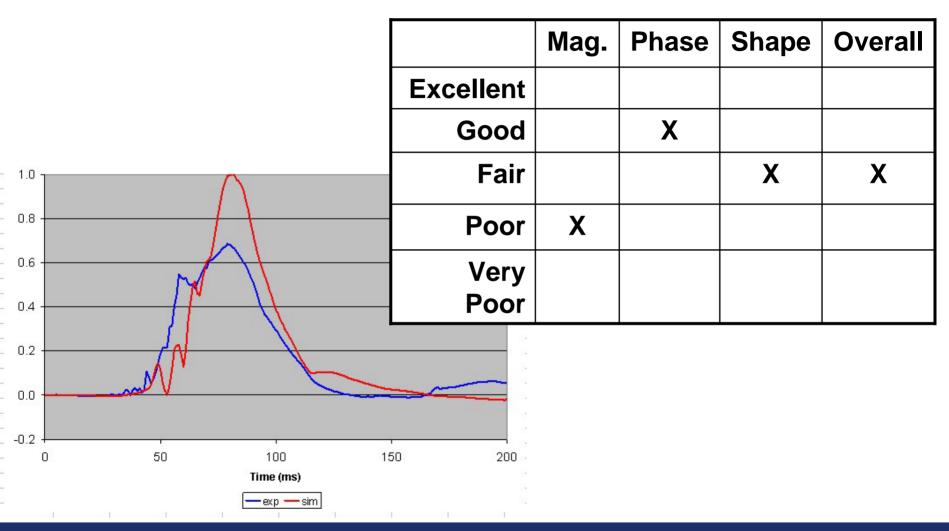

#### Ideal Waveforms + Head Acc.

| Scenario         | Ref. Error | S&G   | WIFac | GEM  | NISE |
|------------------|------------|-------|-------|------|------|
| Mag.             | 20%        | 20.0  | 16.7  | 10.9 | 1.6  |
| + Phase          | ~20%       | 19.5  | 55.2  | 5.9  | 18.2 |
| - Phase          | ~20%       | 19.5  | 55.0  | 5.4  | 18.2 |
| Weighting (L)    | 2.0%       | 0.6   | 9.8   | 0.2  | 0.0  |
| Weighting<br>(H) | 98%        | 100.0 | 49.8  | 56.4 | 20.0 |
| Head Acc.        | 6.3%       | 9.9   | 33.1  | 3.6  | 2.9  |

Weighting ref. = area under curve, Acc. ref. = rel. error on HIC

#### **Discrimination**




#### **Discrimination**

|            | S&G  | WIFac | GEM  | NISE |
|------------|------|-------|------|------|
| Model A    | 29   | 30    | 16   | 6.3  |
| Model B    | 26   | 34    | 11   | 6.1  |
| Model C    | 20   | 32    | 10   | 6.8  |
| Model D    | 45   | 35    | 19   | 6.5  |
| Model E    | 24   | 33    | 12   | 7.7  |
| Mean       | 29   | 33    | 13   | 6.7  |
| Coef. Var. | 0.33 | 0.06  | 0.29 | 0.09 |

#### **SME Details**

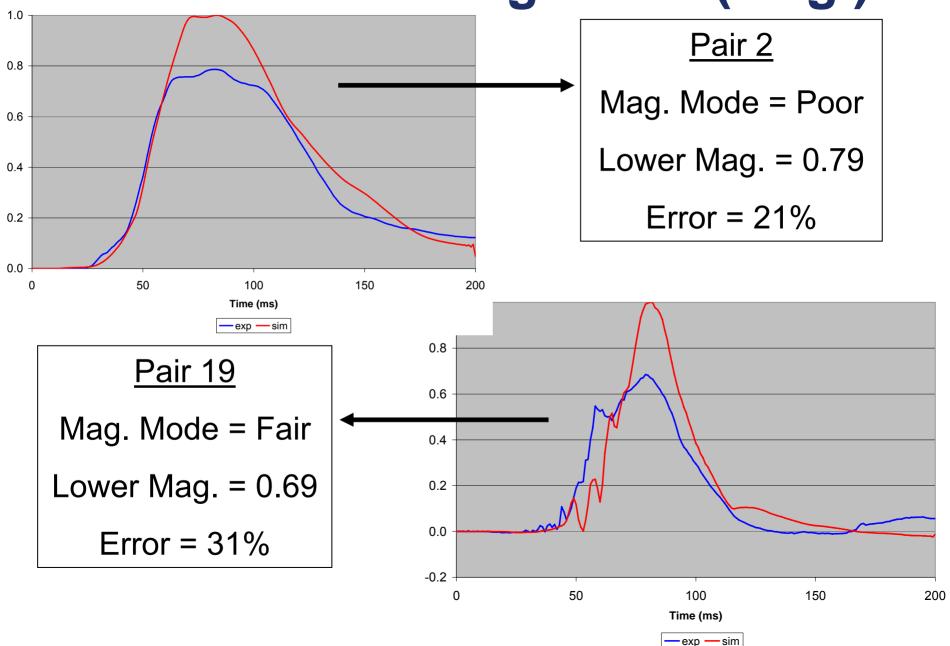
- 16 experts (industry, gov't, academia) submitted evaluations of 39 test/simulation time history curves.
- Evaluations consisted of a score (excellent, good, fair, poor, very poor) for magnitude, phase, shape, and overall agreement.
- The data represent accel, vel, pos, angle, force, and moment time histories derived from both occupant & structural responses.
- Data normalized such that highest peak = 1.

# **Example Curve (Pair 19/SME 1)**

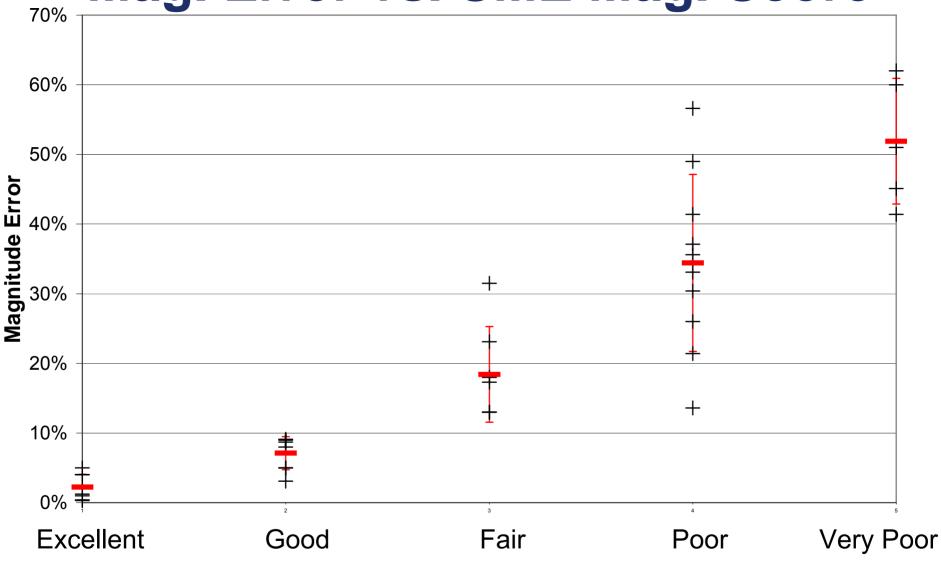


# **SME Data Analysis**

- Qualitative scores converted to quantitative:
  - Excellent = 1
  - Good = 2
  - Fair = 3
  - Poor = 4
  - Very Poor = 5
- Basic statistical calculations computed for each test/simulation pair (average, mode, st dev, etc.).
  - Mode represents the most frequent response.


# How do SMEs determine the Overall score?

- Magnitude score = Overall score: 25/39 (pairs)
- Phase score = Overall score: 20/39
- Shape score = Overall score: 31/39
- Worst score from Mag/Phase/Shape: 28/39
- Best score from Mag/Phase/Shape: 19/39
- Average score from Mag/Phase/Shape: 28/39
- Magnitude = Phase = Shape = Overall: 13/39


#### **Observations**

- Curve shape includes both magnitude (peak) and phasing (timing).
  - Can have good magnitude without good shape, but not good shape without good magnitude.
  - Can match time of peak with poor shape, but not good shape with poor timing.
- Magnitude scores are not consistent within individual SME or group.

Inconsistent Magnitude (Mag.)



Mag. Error vs. SME Mag. Score



# Mag. % Error vs. SME Mag. Score

|           | Avg.<br>Diff. | St Dev | Avg -<br>1 St Dev | Avg +<br>1 St Dev | Suggested<br>Range (%) |
|-----------|---------------|--------|-------------------|-------------------|------------------------|
| Excellent | 2.2           | 1.7    | 0.5               | 3.9               | 0 – 4                  |
| Good      | 7.1           | 2.4    | 4.7               | 9.5               | 4 – 10                 |
| Fair      | 18.4          | 6.9    | 11.6              | 25.3              | 10 – 20                |
| Poor      | 34.4          | 12.7   | 21.7              | 47.1              | 20 – 40                |
| Very Poor | 51.9          | 9.0    | 42.9              | 60.9              | 40 +                   |

# **Phasing**

- Defined for SME Evaluation as the "timing of events."
- Time of the peak is typically used within a relative error.
- Definition of a reference time allows for a time independent error calculation.
  - Simple relative error ( $\Delta t / t_T$ ).
  - 5 ms difference at 50 ms (10%) vs. 150 ms (2.5%).
  - For ref = 100 ms ( $\Delta t / t_{ref}$ ), error = 5% regardless of location in time history.

# Comparison of Phasing Error to Mag.

|           | Low       | High      | Suggested  |
|-----------|-----------|-----------|------------|
|           | (% error) | (% error) | Mag. Range |
| Excellent | 0         | 5         | 0 - 4      |
| Good      | 0         | 8         | 4 - 10     |
| Fair      | 1         | 40        | 10 – 20    |
| Poor      | 2         | 30        | 20 - 40    |
| Very Poor | 42        | 42        | 40 +       |

# Metric Avg. vs. SME Shape

|              | S&G  | WIFac | GEM  | NISE | Suggested Mag Range |
|--------------|------|-------|------|------|---------------------|
| Excellent    | 4.5  | 14.9  | 2.7  | 0.8  | 0 – 4               |
| Good         | 12.9 | 28.1  | 11.1 | 3.3  | 4 – 10              |
| Fair         | 25.9 | 45.4  | 23.9 | 14.4 | 10 – 20             |
| Poor         | 32.1 | 48.7  | 31.7 | 25.2 | 20 – 40             |
| Very<br>Poor | 65.6 | 74.2  | 33.6 | 78.0 | > 40                |

# **Curve Shape Results**

- S&G most closely reproduced the reference errors for idealized waveforms.
- S&G and GEM performed best in the discrimination evaluation.
- S&G, GEM, and NISE were all consistent with the SME evaluations.
  - Curve shape error matched the error ranges suggested from the magnitude data.

#### **Metric Evaluation Rationale**

- Idealized waveforms allow for a better understanding of the underlying features of the various metrics.
  - Comparison to absolute error.
- Use of head acceleration allows for comparison with relative error of HIC.
- Discrimination between various simulation results is beneficial.
  - i.e., when used within an optimization routine.

# **Metric Evaluation Rationale (2)**

- If metrics are to be used as a stand in for expert opinion, it is important for the results to be consistent with the Subject Matter Expert opinions.
- When combining magnitude error, timing of peaks, and shape, it is critical that the individual error scores are consistent.
  - i.e., 10% is "good" for all features.
  - Apples to apples comparison.

# **Curve Shape Recommendation**

- Simple, deterministic metric.
  - Easy to implement in a spreadsheet.
  - Limited number of seat tests.
- Error metric biased towards the experiment.
  - Consistent with certification activities.
- Appropriate results for idealized curves.
- Metric results consistent with SME values.
- Sprague & Geers metric meets these specifications and appears to be the best choice for validating numerical seat models.