Research Considerations in Design For Security Requirements

Jeff Gardlin October 31, 2007

5th Triennial International Fire & Cabin Safety Research Conference

Background

- Considerations of Security In Aircraft Design Date back to Lockerbie Bombing
- ICAO Amendment 97 to Annex 8 Requires Consideration of Eight Issues
- Subsequent ARAC Activity to Adopt ICAO Requirements as Harmonized Requirements
- Aviation and Transportation Security Act

What are The Eight Issues?

- Systems survivability for significant damage events.
- Cargo compartment fire suppression to address sudden and extensive fires.
- Cabin smoke extraction for large quantities of smoke and fumes that could result from explosions.
- Protection of the flight crew compartment from smoke and fumes.

- Identification of a least risk location to place a suspect device.
- Design of a least risk location to place a suspect device.
- Design of flight crew compartment door and bulkhead to resist penetration by small arms fire and shrapnel.
- Interior design to facilitate searches and inhibit the hiding of dangerous objects.

Current Regulatory Situation

- All Passenger-Carrying part 121 Transport Category Airplanes were modified with reinforced flightdeck doors as of April 9, 2003
- All Foreign airlines operating into the US must also have a reinforce flightdeck door

Rulemaking Underway

- Proposed Changes to 14CFR25 (NPRM 06-19)
 - Amend existing flightdeck door rule
 - Add new requirements to address remainder of ICAO recommendations
- Proposed Applicability
 - Commercial Operation
 - 60 or More Passengers
 - 100,000lbs or More MTGW

Challenge to Implementation

- ICAO Standards are necessarily general
 - "maximize"
 - "consider"
 - "take into account"
- Regulatory language must state a requirement that:
 - Is clear in its intent
 - Is achievable
 - Is enforceable

Existing Relevant Regulations

- Section 25.831
- Section 25.841
- Section 25.851
- Section 25.853
- Section 25.855
- Section 25.857
- Section 25.858
- -That is, quite a few

Need to maintain compatibility and avoid redundancy

Fire Safety Related ICAO Requirements

- Flightdeck smoke protection
- Passenger cabin smoke protection
- Cargo fire protection systems
- System survivability

Different Issues for each of the areas

- Occupant safety
- Airplane survivability
- Airplane controllability

Flight Deck Smoke Penetration

- Rule would require Flight Deck to prevent smoke penetration from "anywhere"
- Current rules address:
 - Smoke from a cargo fire
 - Smoke evacuation from the flightdeck

Research Needed

- Effects of Geometry and air conditioning system variations
- Effect of positive pressure differential
- Is there a <u>simple</u> but effective compliance method?

Research Conducted

- Ground Tests with different airflow configurations
- Different airplanes
- Pressure measurements

Findings

- Pressure differential is sufficient to prevent smoke penetration
- Differential is too small to measure effectively
- Visual assessment using a membrane between areas is possible*

*DOT/FAA/AR-TN03/36

Empirical Method

Cabin Smoke Evacuation

- No Current Rules address cabin smoke evacuation
- Proposed approach would permit compliance using a rate of air change, w/no further demonstration
- Approach based on:
 - Smoke <u>quantity</u> from cargo fire
 - Hazard based on Fractional Effective Dose (FED)
 - Air change rate needed to keep FED below 1

Research

• Literature on:

- type of fire
- hazards from the fire
- means to mitigate hazards
- No new experiments needed

Findings

- Type of fire is surface burning
- Hazards from fire are smoke/toxic gases
- Using a simplified Fractional Effective Dose Model, dilution of the toxic gases will maintain an acceptable environment

Cabin Smoke Evacuation

Exponential Decay

Cabin Smoke Evacuation

Conclusion

 Adequate fresh (outside) air change rate would be a suitable method of compliance

Cargo Fire Protection

Two Facets:

- AgentAs good as Halon
- System Survivability
 Either shock or fragment damage, or tolerance to large displacements
- Tests or Analysis to Substantiate

Cargo Fire Protection: Agent

- Current Minimum Performance Standards Address Multiple Threats
- Fire from an incendiary is a surface fire (previous FAA research)
- Existing agents cope with this
- Minimum performance standards for Halon replacement agents address sufficient criteria

Cargo Fire Protection: System

- Most relevant research is sensitive
 - Specific threats
 - Specific vulnerabilities
 - Derivations of same

Generally:

- Shock Itself Does not Appear to be a Threat
- Fragments (or other debris) could damage or disable system
- Relative displacement of supporting structure a concern
- Redundancy of vulnerable components may be acceptable to show compliance
- Shielding also option

Separation of Flight Critical Systems and Controls

- Driven by, but not limited to, Security Threat
 - Fire is another potential threat
- No current rule requires this in general
 - §§25.729(f) and 25.903(d) address tire and rotor burst
- Current Approach is "damage based" (Rather than "threat based")
- Requirement would create a spherical volume, based on airplane diameter
- Similar to hole size in § 25.365
- Original proposals for §25.365 included consideration of explosive device

Damage-Based Concept

Damage vs. Fuselage Diameter

Separation of vital Systems and Controls

Conclusion

- Many of the proposed design for security requirements have implications, and benefits, for fire safety
- Compliance methods can be fairly straightforward with limited test and analysis required

Questions?