Development of a Multi-Sensor Cargo Compartment Fire Detection Alarm Algorithm

Presented to: The Fifth Triennial International Fire and Cabin Safety Research Conference Atlantic City, NJ

Adityanand U. Girdhari Presented by: David Blake FAA William J. Hughes Technical Center

October 31, 2007

Federal Aviation Regulation 25.858

Requires that the cargo compartment fire detection system provide a visual indication to the flight crew within one minute of the start of a fire.

Problem

- •The majority of currently installed fire detectors are photoelectric smoke detectors that can not differentiate between smoke particles and other airborne particles such as dust and condensation.
- •The ratio of false alarms to the detection of actual fires in the cargo compartments of U.S. registered aircraft is on the order of hundreds to one.

Federal Aviation Administration

Recessed pan in 707 ceiling

Gas Probe

Fire Sources

Resin Block

Shredded Newspaper

Pan of Alcohol

Alcohol Soaked Rags

Urethane Foam

Suitcase with Rags

Nuisance Sources

Vaporizer

Heat Gun

Engine Exhaust

Dust

Human Respiration (CO₂)

Tests were conducted at numerous locations throughout the cargo compartment to generate a matrix of sensor readings for various fire and nuisance types and locations.

REFERENCE SOURCE	MIC (Volts)	Rate-Rise (Volts/sec)	Smokemeter (%LT/ft)	Rate-Rise (%LT/ft/sec)	CO (ppm)	Rate of Rise CO	CO ₂ (ppm)	Rate of Rise CO ₂	Temp. Change (°F)	Temp. Rate of Rise
REPERENCE SOURCE										
Resin Block (X Location)	0.589	-0.522	48.743	-3.036	108.889	4.580	1497.116	49.026	9.831	0.815
PERIMETER TESTING										
Resin Block (Fwd)	0.583	-0.246	59.959	-1.522	86.243	3.571	1076.050	34.180	3.831	0.312
Resin Block (Aft)	0.447	-0.340	55.755	-0.010	88.763	2.369	997.473	58.431	6.782	0.302
Resin Block (Sidewall)	0.691	-0.391	53.372	-2.722	94.696	2.777	1245.117	24.185	5.352	0.332
NUISANCE SOURCE (X Location)										
Arizona Test Dust (Container)	2.801	-0.694	91.276	-1.798	0.088	0.047	0.135	0.078	0.037	0.018
Vaporizer (Fog formation)	4.822	-0.029	41.823	-4.653	0.107	0.076	5.231	0.619	2.159	0.289
Exhaust fumes (Forklift loading)	4.845	-0.046	94.126	-0.149	493.172	45.242	712.394	55.237	0.294	0.137
Heat Gun (Heated container)	1.854	-0.262	49.049	-3.982	0.274	0.106	0.539	0.144	22.967	0.889
Occupied compartment (Human)	4.850	-0.023	98.966	-0.029	0.095	0.024	307.159	23.041	0.087	0.026
PERIMETER TESTING										
Arizona Test Dust (Under pan)	2.705	-0.713	70.513	-10.582	0.045	0.028	0.103	0.087	0.046	0.031
Arizona Test Dust (2 feet)	3.110	-0.665	60.638	-19.684	0.045	0.028	0.103	0.087	0.046	0.031
Arizona Test Dust (4 feet) FIRE SOURCES (X Location) FLAMING SOURCES	4.990	-0.038	97.366	-1.308	0.045	0.028	0.103	0.087	0.046	0.031
Denatured Alcohol (40 mL)	4.552	-0.038	86.089	-1.239	1.624	0.119	1831.611	99.377	13.154	0.529

016
344
398
)95
117
200
391
166
276
570
139
225
551

Five Alarm Algorithms were Designed

1. IF {(CO ppm >2 OR CO₂ ppm >30) AND (°F >3 OR MIC volts <4.7) AND (%LT/ft <97)} THEN \rightarrow ALARM

Absolute values of gases AND Temperature OR MIC OR Smoke absolute values

2. IF $\{(d[CO]/dt > 1 \text{ OR } d[CO_2]/dt > 10) \text{ AND } (d[\%LT/ft]/dt > 0.1 \text{ OR } d[MIC]/dt > 0.1 \text{ OR } d[°F]/dt > 0.15)\} \text{ THEN} \rightarrow \text{ALARM}$

Rate of change of gases AND rate of change of Smoke OR MIC OR Temperature

3. IF $\{(d[CO]/dt > 1 \text{ OR } d[CO_2]/dt > 10) \text{ AND } (d[\%LT/ft]/dt > 0.1 \text{ OR } d[MIC]/dt > 0.1 \text{ OR MIC volts} < 4.7)\} \text{ THEN} \rightarrow \text{ALARM}$

Rate of change of gases AND rate of change of Smoke OR MIC OR MIC absolute

Five Alarm Algorithms were Designed

4. IF {(CO ppm >2 OR d[CO]/dt >1) AND (MIC volts <4.7 OR d[MIC]/dt >0.1 OR °F >3 OR %LT/ft <94 OR d[%LT/ft]/dt >0.15)} THEN \rightarrow

CO AND MIC OR Smoke absolute OR rate of change OR temperature rise.

5. IF $\{(CO2 ppm > 7.5 or d[CO2]/dt > 5) AND (MIC volts < 4.7 OR)\}$

d[MIC]/dt >0.1 OR °F >3 OR %LT/ft <94 OR d[%LT/ft]/dt >0.15)} THEN \rightarrow ALARM

CO₂ AND MIC OR Smoke absolute OR rate of change OR temperature rise

ALARM

		A	lgorith	m			
	1	2	3	4	5	Photoelectric	Ionization
Total Tests	30	30	30	30	30	30	30
Failure	4	0	1	1	0	10	8
Successful	26	30	29	29	30	20	22
Successful %	87%	100%	97%	97%	100%	67%	73%

Successful is defined as returning an alarm in less than 60 seconds after the start of a fire and not returning an alarm for any nuisance source.

Fire Sources		F	Algorithn	n		Photoelectric	Ionization	
Fire Sources	1	2	3	4	5	Photoelectric	IOIIIZatioii	
(X Location)								
FLAMING SOURCES								
Denatured Alcohol (40 mL)	114	20	80	X	14	118	X	
Alcohol soaked rags	22	14	14	18	14	32	14	
Polyurethane foam	12	12	12	14	10	38	10	
SMOLDERING SOURCES								
Shredded newspaper	20	16	16	18	16	20	18	
Suitcase	60	44	44	46	44	62	126	
PERIMETER TESTING								
Alcohol soaked rags (Fwd)	202	30	30	34	30	X	34	
Polyurethane foam (Fwd)	24	24	24	28	22	22	20	
Shredded newspaper (Fwd)	38	38	38	40	38	34	36	
Alcohol soaked rags (Aft)	48	36	34	36	32	50	46	
Polyurethane foam (Aft)	46	40	40	46	34	52	36	
Shredded newspaper (Aft)	46	28	28	30	28	48	22	

Sandia Cargo Compartment Smoke, Gas and Heat Transport CFD Code

Comparison of Experimental and Computational Alarm Times

Fire Sources		A	Agorith	m		Photoelectric	Ionization
	1	2	3	4	5		
EXPERIMENTAL							
Resin Block (X-Location)	20	18	18	24	14	20	20
PERIMETER TESTING							
Resin Block (Fwd)	70	48	48	50	48	54	84
Resin Block (Aft)	50	50	50	54	50	50	42
Resin Block (Sidewall)	38	26	26	38	26	36	42
COMPUTATIONAL							
Resin Block (X-Location)	20	18	18	20	18	18	18
PERIMETER TESTING							
Resin Block (Fwd)	70	52	52	52	50	52	82
Resin Block (Aft)	50	50	50	50	46	48	48
Resin Block (Sidewall)	28	26	26	28	26	30	34

Difference in Alarm Times with Experimental Data Versus Computational Data (Seconds)

Fire Locations	Algorithm						
		2	3	4	5	Photoelectric	Ionization
Resin Block (X-Location)	0	0	0	4	4	2	2
Resin Block (Fwd)	0	4	4	2	2	2	2
Resin Block (Aft)	0	0	0	4	4	2	6
Resin Block (Sidewall)		0	0	10	0	6	8

Conclusions

- •Multi-sensor alarm algorithms can simultaneously reduce false alarms to nuisance sources and increase sensitivity to actual fire sources.
- •The Sandia smoke transport code is an effective tool to create a virtual smoke detector to test alarm algorithms and proximity to fire response times.