FAA Triennial Fire Safety Conference

November 1st

Inerting Systems for Commercial Airplanes

Alan Grim
Overview

• Brief History
• System Overview
• Airplane Safety Considerations
• Hot Day Operations
• Design Goal
• Implementation
• Future Design
Brief History

- 1996 NTSB Recommendations following Flight 800 accident included Flammability Reduction
- FAA initiated ARAC teams to study flammability reduction and inerting for commercial use
- 1998 ARAC Studied flammability reduction options
 - Recommended rule for new design to reduce flammability
- 2001 ARAC focused on Inerting
 - Ground based
 - On board in flight
 - System still not practical in 2001
 - Cost, weight, reliability all issues
 - Recommended further development of onboard generation
Brief History (Cont’d)

• Enablers for commercial airplane inerting system development
 – FAA testing validated that an Inert Benchmark of 12% O2 precludes significant pressure rise for vast majority of commercial conditions
 – Use of Hollow Fiber Membranes
 – Applying an average risk fleet wide safety assessment (Monte Carlo)
 • Reducing flammability exposure to levels at least equivalent to wing tanks will provide an order of magnitude improvement
 – Defining the system as non-critical to airplane operations
 • Use of inerting as an additional level of protection to ignition protection
 – Focus on high flammability exposure tanks
Generic System Overview

Nitrogen Generation System (NGS)

- System Status / Indication
- External Inputs
- System Control
- Fuel Tank
- Float Valve
- High Flow Descent Control Valve
- NGS Shut-off valve
- Pressurized Air Source
- Ozone Converter
- Heat Exchanger
- Filter
- Air Separation Module
- NEA to Tank(s)
- Waste OEA Overboard
- Cooling flow Overboard
- Witness Drain

NEA – Nitrogen Enriched Air
OEA – Oxygen Enriched Air
System Overview

• Airplane bleed or compressor flow/pressure source of air
 – Air temperature of up to 450F
 • Too hot for current fiber to handle
 – ASM requires warm air with as much pressure as available
 • Cooling of air source required
 – Ram air for cooling source
 – Control temperature to ASM for optimum performance
• ASM separates O2 from air to generate NEA
 – Purity dependant on pressure available
 – OEA exhausted overboard
 – NEA supplied to tank
System Overview

• Multiple flow modes used to reduce bleed consumption
 – Low flow typically used in climb and cruise
 • Inerting performance good
 • Bleed flow conserved – directly related to fuel burn
 – High flow used during descent
• Vent system modifications may be required
 – Boeing Puget Sound airplanes vent to both wing tips
 – Condition dubbed “cross-venting” results
 – Design feature required to prevent “cross-venting”
System Overview

• Distribution system
 – System size and geometry dependent on even distribution of NEA
 – Tank structure will have an effect on distribution
 – Discrete vent points will affect design
Safety Considerations

• Design Precautions that must be addressed to preclude creating additional hazards
 – Prevent potential new ignition sources inside fuel tank
 • Bond for electrostatics
 • Prevent lightning energy entering tank
 • 450F air indirectly connected to fuel tank
 – System must absolutely preclude 450F air from reaching tank
 – Requires redundant independent shutoff methods
 – Minimize impact of air source on existing systems
 • Cabin pressurization
 • Ability to evacuate smoke from cabin
 • Engine performance
Safety Considerations

• Potential hazards to maintenance personnel
 – Areas outside fuel tank where NGS is installed or routed
 • Limit NEA concentration to protect maintenance personnel
 • Placards in affected area
 – Fuel tank
 • Requirement drives tank to 02 levels below 12%
 • Emphasize existing purging procedures
 • Placards adjacent to tank access doors
• Modifications to fuel tank vent system must not result in tank over/under pressure conditions
 – NGS failures
 – Rapid climb or emergency descent
 – Refueling failure cases
Hot Day Operations

• Unexplained accidents occurred on 80F ambient temps and greater
 – 2 ground incidents and 1 climb incident
• Analysis shows significant flammability exposure on 80+ F days
 on ground and in climb
• FAA Special Condition covers this scenario
 – 3% Fleet Average limit
 – 3% Ground on 80+F days limit
 – 3% Climb on 80+F days limit
• 80+F Ground and climb requirement will likely be system size driver
Design Goal

• Enhance fuel system safety through development of a practical and effective Nitrogen Generation System
 – Minimize flammability exposure
 – Address ground and climb operations on warm days
 – Design to achieve 10 day MMEL Classification
 – Minimize bleed air use impact on fuel burn
 – Minimize weight impact
 – Minimize scheduled maintenance

• Ensure Service Ready
Implementation

• Certification requirements are specified in FAA/EASA Special Conditions

• NGS is new technology for commercial airplanes
 – Extensive developmental and qualification testing required
 – Ground and flight testing to validate operation

• In-Service Evaluation to ensure NGS is service ready
 – The Boeing ISE began in 2005 on two 737-700s and two 747-400s
 – Over 30,000 Total NGS Hours and 10,000 NGS Cycles accumulated
 – The ISE demonstrated that NGS had no impact on the normal daily airplane operation

• Introduce design enhancements before full production incorporation
Implementation

• Design enhancements
 – Service life / durability issues discovered during qualification testing resulting in life limited parts in ISE
 – ISE confirmed qualification test concerns
 – Cause and necessary corrective action determined
• Design improvements incorporated prior to full production
 – Additional qualification and flight testing will validate final design
 – Intended to meet initial service life objectives and reduce scheduled maintenance
• Service ready system and maintenance support structure in place
Future Design

• Future fuel system design will include both ignition prevention and flammability reduction features
 – Code of Federal Regulations, Part 25 was amended in 2001 to enhance fuel tank safety standards
 • Ignition prevention requirements were enhanced
 • Flammability minimization requirements were added
 • FAA and EASA rule making in process to determine if flammability minimization will be mandated for production and in-service airplanes
 • Boeing to begin delivery of service ready Nitrogen Generation Systems in production airplanes beginning in 2008