

Alan Grim

Overview

- Brief History
- System Overview
- Airplane Safety Considerations
- Hot Day Operations
- Design Goal
- Implementation
- Future Design

Brief History

- 1996 NTSB Recommendations following Flight 800 accident included Flammability Reduction
- FAA initiated ARAC teams to study flammability reduction and inerting for commercial use
- 1998 ARAC Studied flammability reduction options
 - Recommended rule for new design to reduce flammability
- 2001 ARAC focused on Inerting
 - Ground based
 - On board in flight
 - System still not practical in 2001
 - Cost, weight, reliability all issues
 - Recommended further development of onboard generation

Brief History (Cont'd)

- Enablers for commercial airplane inerting system development
 - FAA testing validated that an Inert Benchmark of 12% O2 precludes significant pressure rise for vast majority of commercial conditions
 - Use of Hollow Fiber Membranes
 - Applying an average risk fleet wide safety assessment (Monte Carlo)
 - Reducing flammability exposure to levels at least equivalent to wing tanks will provide an order of magnitude improvement
 - Defining the system as non-critical to airplane operations
 - Use of inerting as an additional level of protection to ignition protection
 - Focus on high flammability exposure tanks

Generic System Overview

Nitrogen Generation System (NGS)

NEA – Nitrogen Enriched Air OEA – Oxygen Enriched Air

System Overview

- Airplane bleed or compressor flow/pressure source of air
 - Air temperature of up to 450F
 - Too hot for current fiber to handle
 - ASM requires warm air with as much pressure as available
- Cooling of air source required
 - Ram air for cooling source
 - Control temperature to ASM for optimum performance
- ASM separates O2 from air to generate NEA
 - Purity dependant on pressure available
 - OEA exhausted overboard
 - NEA supplied to tank

System Overview

- Multiple flow modes used to reduce bleed consumption
 - Low flow typically used in climb and cruise
 - Inerting performance good
 - Bleed flow conserved directly related to fuel burn
 - High flow used during descent
- Vent system modifications may be required
 - Boeing Puget Sound airplanes vent to both wing tips
 - Condition dubbed "cross-venting" results
 - Design feature required to prevent "cross-venting"

- Distribution system
 - System size and geometry dependent on even distribution of NEA
 - Tank structure will have an effect on distribution
 - Discrete vent points will affect design

Safety Considerations

- Design Precautions that must be addressed to preclude creating additional hazards
 - Prevent potential new ignition sources inside fuel tank
 - Bond for electrostatics
 - Prevent lightning energy entering tank
 - 450F air indirectly connected to fuel tank
 - System must absolutely preclude 450F air from reaching tank
 - Requires redundant independent shutoff methods
 - Minimize impact of air source on existing systems
 - Cabin pressurization
 - Ability to evacuate smoke from cabin
 - Engine performance

Safety Considerations

- Potential hazards to maintenance personnel
 - Areas outside fuel tank where NGS is installed or routed
 - Limit NEA concentration to protect maintenance personnel
 - Placards in affected area
 - Fuel tank
 - Requirement drives tank to 02 levels below 12%
 - Emphasize existing purging procedures
 - Placards adjacent to tank access doors
- Modifications to fuel tank vent system must not result in tank over/under pressure conditions
 - NGS failures
 - Rapid climb or emergency descent
 - Refueling failure cases

Hot Day Operations

- Unexplained accidents occurred on 80F ambient temps and greater
 - 2 ground incidents and 1 climb incident
- Analysis shows significant flammability exposure on 80+ F days on ground and in climb
- FAA Special Condition covers this scenario
 - 3% Fleet Average limit
 - 3% Ground on 80⁺F days limit
 - 3% Climb on 80⁺F days limit
- 80⁺F Ground and climb requirement will likely be system size driver

Design Goal

- Enhance fuel system safety through development of a practical and effective Nitrogen Generation System
 - Minimize flammability exposure
 - Address ground and climb operations on warm days
 - Design to achieve 10 day MMEL Classification
 - Minimize bleed air use impact on fuel burn
 - Minimize weight impact
 - Minimize scheduled maintenance
- Ensure Service Ready

Implementation

- Certification requirements are specified in FAA/EASA Special Conditions
- NGS is new technology for commercial airplanes
 - Extensive developmental and qualification testing required
 - Ground and flight testing to validate operation
- In-Service Evaluation to ensure NGS is service ready
 - The Boeing ISE began in 2005 on two 737-700s and two 747-400s
 - Over 30,000 Total NGS Hours and 10,000 NGS Cycles accumulated
 - The ISE demonstrated that NGS had no impact on the normal daily airplane operation
- Introduce design enhancements before full production
 incorporation

Implementation

- Design enhancements
 - Service life / durability issues discovered during qualification testing resulting in life limited parts in ISE
 - ISE confirmed qualification test concerns
 - Cause and necessary corrective action determined
- Design improvements incorporated prior to full production
 - Additional qualification and flight testing will validate final design
 - Intended to meet initial service life objectives and reduce scheduled maintenance
- Service ready system and maintenance support structure in place

Future Design

- Future fuel system design will include both ignition prevention and flammability reduction features
 - Code of Federal Regulations, Part 25 was amended in 2001 to enhance fuel tank safety standards
 - Ignition prevention requirements were enhanced
 - Flammability minimization requirements were added
- FAA and EASA rule making in process to determine if flammability minimization will be mandated for production and in-service airplanes
- Boeing to begin delivery of service ready Nitrogen Generation Systems in production airplanes beginning in 2008

