

Human Factors Department Cranfield University, UK.

The effect of Type III hatch placement on evacuation from smaller transport aircraft.

Rebecca L. Wilson and Helen C. Muir

www.cranfield.ac.uk

Acknowledgements

- The authors would like to thank Mr Claude Lewis of Transport Canada for commissioning the research.
- The views expressed here are solely those of the authors.

Background

- Type III hatches have been disposed in a range of locations.
- Placement includes outside and inside the cabin.
- Inside the cabin hatches have been placed:
 - on the floor in the exit row
 - on the seats in the exit row
 - in the main aisle

Background

- An accident analysis of hatch disposal concluded that 'approximately 80% were disposed of inside the cabin'.
- Authors acknowledge:
 - only a limited number of cases cited hatch placement.
 - hatch placement was cited as a hindrance in only 3 cases.

(R.G.W Cherry & Ass, 2006, p4).

Background

- McLean et al (2002) 'Access to Type III exits'.
- Hatch disposal location was one of the variables manipulated: inside or outside.
- A few incorrect placements were reported, all during inside placement trials.
- 'Potential for the hatch to negatively influence access space at the exit and interfere with subject egress' (McLean et al, 2002, p2).

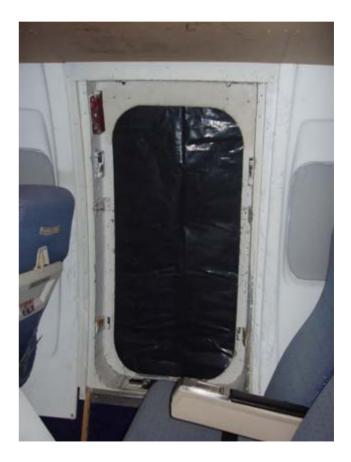
Aim of research

• To investigate the potential influence of the placement of the Type III hatch on passenger evacuation from a smaller transport aircraft.

Cranfield UNIVERSITY

Test facility

Modified to represent features associated with smaller transport aircraft:


- Narrowing of fuselage
- Reduction of
 headroom
- Installation of seating doubles

Cranfield UNIVERSITY

Type III exit

- Type III exit in the centre of the starboard side of the cabin.
- Exit hatch was not in place during the trials screened prior to boarding.
- Screening was removed on the call to evacuate.

Independent variable

- IV: The location of the Type III hatch.
- A replica hatch was constructed.
- Secured in advance of participants boarding.

Exp condition 1: No hatch in cabin

www.cranfield.ac.uk

Exp condition 2: Vertical placement



www.cranfield.ac.uk

Exp condition 3: Horizontal placement

Challenge

- Challenge with hatch placement was balancing:
 - Safety: risks to participants had to be minimised.
 - Experimental control: hatch must be placed in the same location for each trial in condition.
 - Ecological validity: reduction due to the factors above.

Dependent variable

- Data extracted from time coded video footage.
- Main DV: participant egress time.
- Defined as: the time from the call to evacuate until the participant had their first foot on simulator wing.

Participants

- 24 independent groups of up to 18 volunteers were recruited.
- Each group participated in one session.
- For safety and insurance provision, age and health criteria were in place.

Cranfield UNIVERSITY

Experimental Design

Hatch placement		
No hatch	Vertical	Horizontal
8 groups of naïve participants	8 groups of naïve participants	8 groups of naïve participants

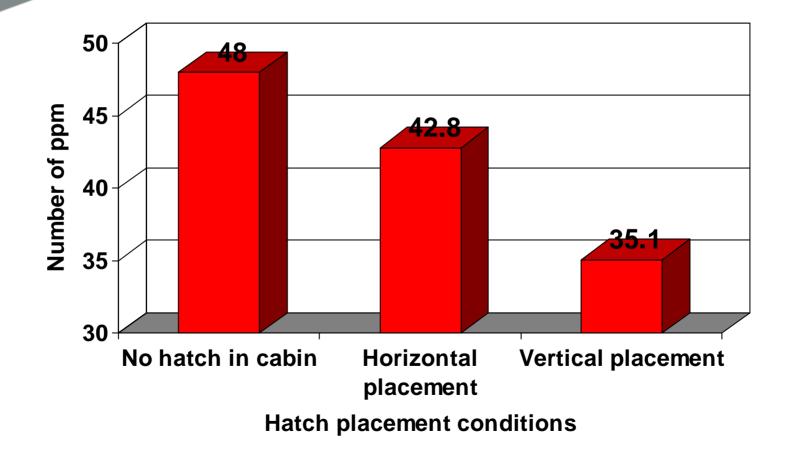
Procedure

Participants were greeted by "cabin crew".

- Check-in procedure: information on trials, medical questionnaire, providing informed consent and a pre-trial briefing.
- Participants boarded the cabin simulator.
- Seating pre-allocated via a random seating plan.
- Each group were given a typical safety briefing.

Evacuations

- A recording of engine noise played, followed by Captain's command to "Undo your seatbelts and get out!"
- Cabin crew issued assertive, positive and concise commands (Muir & Cobbett, 1996).
- Group incentive to evacuate as quickly as possible.



Results

- The time for each participant to evacuate was extracted from video footage recorded outside the exit.
- All evacuations were successfully completed.
- Evacuation rates were calculated as the dependent variable for analysis.

Mean evacuation rates (pax per minute)

www.cranfield.ac.uk

Inferential statistical analysis

- Statistically significant difference in evacuation rates (ppm) due to the placement of the hatch.
- Rates were significantly higher when:
 - no hatch was in the cabin compared to when the hatch was placed horizontally or vertically.
 - the hatch was placed horizontally compared to vertically in the cabin.

Conclusions

- Results relate to preliminary experimental work.
- Raise interesting issues regarding Type III exits in smaller airframes.
- Research has shown a significant effect for hatch placement on the rate at which passengers could egress through the Type III exit.
- Result is not surprising, as hatch placement led to a partial or total obstruction of the exit row.

Conclusions

- Results highlight the importance of ensuring that hatch operators:
 - clearly understand the task requirements.
 - are able to dispose of the hatch into an appropriate location so that it does not impede egress.
- One solution to inappropriate placement is an automatically disposed hatch.

Conclusions

- Further investigation into hatch placement is required:
 - Alternative hatch placement locations.
 - Different motivational strategies.
 - Different seating configurations.
 - Enhancing ecological validity, whilst ensuring high levels of safety and control.

Rebecca Wilson Human Factors Department Cranfield University, UK rebecca.wilson@cranfield.ac.uk