Digital Human Modeling with Applications

Zhiqing Cheng, Ph.D
Advanced Information Systems, General Dynamics

Joseph Pellettiere, Ph.D
Human Effectiveness Directorate
Air Force Research Laboratory

Approved for public release; distribution is unlimited. AFRL-WS 07-2108 (September 2007)
Digital Human Modeling (DHM)

• What is DHM? Using computer technology to develop digital models to describe humans

• Why is DHM needed?
 – The human body is a complicated system
 – Humans differ from each other with vast variations
 – Humans need to understand themselves
 – Humans are at the center of various activities

• Application areas
 – Aerospace
 – Defense
 – Automotive
 – Sports
 – Heavy Duty Trucking
 – Farm Equipment
 – Service
 – Manufacturing
 – Human Factors
 – Ergonomics
 – Medical
 – Fashion
DHM Scope and Category

- Ergonomics
- Anthropometrics
- Biomechanics
- Gait and motion analysis

- Physiology
- Pathology
- Behavior
- Performance

✓ Multi-dimensional modeling for apparel fit and equipment interaction
✓ Biomechanical modeling for injury prevention and reduction
Ergonomics Modeling

• Ergonomics (or human factors): Application of scientific information concerning humans to the design of objects, systems and environment for human use

• Modeling
 – Posture
 – Movement
 – Physical capabilities
 – Cognitive capabilities

• Applications
 – Workload or task design
 – Human-machine interface
 – Workspace or work environment design
 – Accommodation
Anthropometrics Modeling

• Anthropometrics: concerned with the physical sizes and shapes of humans, including height, size, weight, and body segment proportion
• Variation with gender, age, and ethnicity
• Applications ranging from clothing, furniture, automobiles, buses, and subway cars to space shuttles and space stations

Gender

Age

Ethnicity
Human 3-D Shape — Data Collection

- 3-D whole body laser scanner
- High resolution, large volume of data
- CAESAR database
 - Civilian American and European Surface Anthropometry Resource
 - 2,400 U.S. & Canadian and 2,000 European civilians, men and women, aged from 18-65
 - Using 3D Laser scanner to collect body surface data
 - Each person in a standing pose, full-coverage pose, and relaxed seating pose
Human 3-D Shape Representation

- **Shape representation**
 - Traditional metrics
 - Landmarks

p1-p3 are principal axes 1, 2, and 3

(0,0,0) is the center of gravity (cg)
Human Shape Modeling and Morphing

• **Shape modeling**
 – Static modeling based on a shape descriptor
 – To reproduce a shape from scan data
 – To create a shape according to inputs of parameters

• **Shape Morphing**
 – From a base shape to produce variations
 – Anthropometric variations with respect to gender, age, and ethnicity
 – Within anthropometric variability limits
Human Gait Modeling

- Landmark trajectory, skeleton model, based on motion capture
- Kinematics of human motion
- Gait with respect to gender, age, or other anthropometrical factors
- Behavioral factors
Human Kinematic/Kinetic Modeling

• **Human motion modeling: kinetic modeling**
 – Musculoskeletal model with body shape
 – Bones, joints, muscles, and ligaments
 – Body motion governed by driving forces or based on optimization

• **Example models**
 – Santos, a virtual human model, VSR (Virtual Soldier Research), The University of Iowa, http://www.digital-humans.org/santos/
AnyBody

- Musculoskeletal model
- Joint function and muscle function
- Gait analysis
- Activity simulation
 - carrying a 20 kg rucksack
 - body posture accommodation to the changed weight distribution

Videos Deleted
Santos

- Skeletal structure
- Kinematics system
- Optimization to determine the joint motion
- Gait analysis
- Activity simulation
Human Modeling in Human Motion Analysis

- Human motion analysis methods: model-based or non model-based
- Models used in motion analysis
 - Stick figure
 - 2D contour
 - 3D or volumetric models
Biomechanics Modeling

• Goals
 – To model the human response under dynamic loading
 – To understand injury mechanism
 – To improve crashworthiness of structures

• Applications
 – Auto safety
 – Injury prevention and reduction
 – Sports
 – Rehabilitation
Biomechanical Modeling Techniques

• **Rigid multi-body dynamics**
 - Entire body divided into a number of segments
 - Each segment treated as a rigid body, linking to another with joints
 - Describing kinematics

• **Model tools**
 - MADYMO (MAthematical DYnamic MOdeling)
 - ATB (Articulated Total Body)

• **Finite element method**
 - Using small elements (cubes) to describe the bones, soft tissues, and organs
 - Incorporating biological material models
 - Describing stress and strain

• **Modeling tools**
 - LSDYNA
 - PAM-CRASH/ PAM-SAVE
 - DYTRAN
 - MADYMO
Model Development Activities

- **Humos**: http://humos2.inrets.fr/
 - A Set of HUman MOdels for Safety
 - Funded by the European Commission

- **A research consortium of smart dummies**
 - Involving nine automakers and a pair of auto suppliers
 - Support from university biomechanical research groups
 - First set of adult models--three males and three females in small, medium and large sizes by March 2011
 - Models of children to follow
 - 1 million to 3 million elements for each model
Research Institutions

• Government agencies
 – NIH/NLM
 – NHTSA

• Universities
 – Bioengineering Center of Wayne State University
 – Center for Applied Biomechanics, Virginia University
 – Washington University
 – University of Michigan

• Industries
 – Automobile manufacturers’ R&D department
 – FE software vendors

• Associations
 – International Society of Biomechanics (ISB)
 – American Society of Biomechanics (ASB)
 – Society of Automobile Engineers (SAE)
Open Data Resources

• Bony structure
 ➢ VAKHUM: http://www.ulb.ac.be/project/vakhum/public_dataset/public-data.htm (University of Brussels)
 ➢ ISB: http://isbweb.org/o/content/view/66/73/ (International Society of Biomechanics)
 ➢ BEL: http://www.tecno.ior.it/VRLAB/researchers/repository/BEL_repository.html#ULB%20Virtual%20Human (Biomechanics European Laboratory)

• Soft tissues
 ➢ HUMOS2: http://humos2.inrets.fr/about.php (Project funded by the European Commission)

• Material models
 ➢ Soft tissue material models
 http://wwwiaim.ira.uka.de/web/SoftTissueDB/SoftTissueWiki/index.php/Material_Models (Institut für Technische Informatik)
Automobile Crashworthiness Modeling

- A finite element model of a four-door 1997 Honda Accord DX sedan
- Using a reverse engineering technique, with 220 parts and 117,353 elements
- Simulations of full and offset frontal, side, and car-to-car impact
Occupant-Airbag Interaction Modeling

- FE modeling of airbag using LSDYNA
- Rigid multi-body modeling of occupant using ATB
- Vehicle and interior structures modeled by respective planes using ATB
- Integration of FE airbag model with ATB occupant model
- Model used for
 - Safety performance assessment
 - Injury analysis and prediction
 - Airbag design and optimization
Head-Neck Injury Modeling

- Finite element modeling of the head-neck complex
 - Actual geometrical data of a 68-year old male cadaver specimen
 - Cervical spine C0~C7
 - Muscles and ligament
 - Rigid skull
 - Original model developed by DSO, Singapore

- Challenges to the model validation and modification
 - Accurate anatomical description
 - Material properties of bones, muscles, ligaments, and soft tissues
 - Function of muscles

- Simulation of head-neck response under dynamic tensile loading

Video Deleted
Seating Comfort Modeling

- Bony Structure model
- 3-D scan data and outer shape model
- Integrated Model
 - Multiple layers of solid elements for fat/muscles
 - A layer of shell elements for skin
- Simulation of pressure distribution between the seat cushion and buttock
Human Physiological Function Modeling

- Physiological function modeling
 - Cardiovascular function: blood circulation
 - Lung function: Inhalation/exhalation
 - Other Physiological Function Modeling

- Key Competencies
 - Fluid physics and fluid-structure interaction
 - Finite element analysis: organ level, tissue level, and cell level
 - Advanced analytical tissue models

- Applications
 - Human performance optimization
 - Status assessment: live or dead
 - Injury evaluation
 - Intention prediction
Sitting Arterial/Venous Circulatory Simulation

- Sitting posture arterial/venous circulation simulation with and without gravity
- Shown below: posture, arteries/veins, generated grid, and simulation pressure distribution at instant in time with and without gravity
- Shown at right: pressure traces in time of single heart beat at different points in body with and without gravity

An example, work done by CFDRC
DHM Recent Developments

- **Multi-Scale, Multi-Physics Modeling**
 - From organ level to tissue level and to cell level
 - From biomechanics to physiology, and pathology
 - From bones and soft tissues to vessels, nerves, and neurons

- **Blast induced injury modeling**
 - Blast: shock wave and wind force
 - High rate, short duration impact on human body
 - Modeling of lung, vascular, etc.
 - Modeling of traumatic brain injuries

- **Integration into virtual testing environment**
- **Model validation**
- **Distributed computation**
- **Web based applications**