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Outline

• Motivation for research
• Development of experimental setup and 

procedures
• Test plan in matrix form
• Discussion of results
• Conclusions
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Motivation

• Flammable conditions can exist in airplane fuel 
tanks under certain conditions
• Tank floor heating due to ductwork routed under fuel 

tanks
• Hot liquid fuel vaporizes until equilibrium is reached 

between the liquid and gas phase
• Modeling heat and mass flux occurring within the 

tank can give a good approximation of the relative 
level of flammability in the ullage, given certain 
parameters
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Modeling

• Numerical modeling can be used as a 
substitute for full-scale experimentation.

• Results from fuel vaporization experiments 
under varying ambient conditions can be 
used to validate calculations
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Requirements for Experimental 
Setup

• Ability to vary fuel tank floor temperature with 
uniform floor heating

• Setup with capability of changing ambient 
temperature and pressure with controlled profiles

• Measurement of temporal changes in liquid, 
surface, ullage, and ambient temperatures 

• Ability to asses the amount of fuel escaping into 
the ullage space/condensing on the tank surfaces
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Measuring Input Parameters for 
the Model

Heat Transfer

•Thermocouples on 
tank surface, ullage, 
and liquid fuel.

Mass Transfer Fuel Properties

•Fuel tested in lab 
for flashpoint

•Used fuel 
composition from 
published data of 
fuels with similar 
flashpoints

•FID Hydrocarbon 
analyzer used to 
measure the 
concentration of 
evolved gasses in the 
ullage

•Pressure 
measurement for 
vaporization 
calculations
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Experimental Setup
• Fuel tank – 36”x36”x24”, ¼” aluminum
• Sample ports 
• Heated hydrocarbon sample line
• Pressurization of the sample for sub-atmospheric pressure 

experiments by means of a heated head sample pump
• Intermittent (at 10 minute intervals) 30 sec long sampling
• FID hydrocarbon analyzer, cal. w/2% propane
• 12 K-type thermocouples
• Blanket heater for uniform floor heating
• Unheated tank walls and ceiling
• JP-8 jet fuel
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Experimental Setup

• Fuel tank inside environmental chamber
• Programmable variation of chamber pressure 

and temperature
• Vacuum pump system
• Air heating and refrigeration
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Thermocouple Locations
Thermocouple Channel:

1. Left Fuel

2. Center Fuel

3. Right Fuel

4. Left Ullage

5. Center Ullage

6. Right Ullage

7. Rear Surface

8. Left Surface

9. Top Surface

10. Ambient 

11. Heater 

12. Heater Temperature Controller
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Measuring Ullage Vapor 
Concentration

• Flame ionization detector
• J.U.M. Model VE7 heated total hydrocarbon analyzer
• Detects concentration of hydrocarbons by burning 

vapor in a hydrogen flame
• Upon combustion, a complicated ionization process is 

initiated which releases many free ions
• Positive ions collect at one electrode, negative ions at 

the other
• The current generated between the electrodes is directly 

proportional to the amount of hydrocarbons in the 
sample
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Fuel Compositions
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Laboratory Setup
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Data Acquisition

F.I.D.

Thermocouples

Pressure Transducer

DAS 

PC w/acquisition software



8/3/2005 11:03 AM IFCSRC Lisbon-2004 15

Experimental Procedure
• Fill tank with specified quantity of fuel
• Adjust chamber pressure and temperature to 

desired values, let equilibrate for 1-2 hours
• Begin to record data with DAS
• Take initial hydrocarbon reading to get initial  

quasi-equilibrium fuel vapor concentration
• Set tank pressure and temperature as well as the  

temperature variation
• Experiment concludes when hydrocarbon 

concentration levels off and quasi-equilibrium is 
attained
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•5 gallon fuel load for every test

•Temperature, pressure profiles created to simulate 
in-flight conditions

Test Matrix
Test Type: 0 10,000 20,000 30,000
Const. P X X X X
Vary T & P N/A X X X
Isooctane X N/A N/A N/A
Dry Tank X N/A N/A X

Altitude
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Initial Validation:  Dry Tank
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Initial Validation:  Isooctane
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Tank Heating at Sea Level
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Continuous vs. Intermittent Sampling
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Tank Heating at 10,000’
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Simulated Flight Profile
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Flight 
Profile:  
up to

10,000’
Altitude
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Flight 
Profile: 
up to  

20,000 
ft. 

Altitude
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Flight 
Profile:  
up to 

30,000 
ft. 

Altitude
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Conclusions
• Experiment was well suited for validation of the model
• Initial validation showed accuracy of heat and mass 

transfer correlations for simplified conditions
• Model shows very good agreement for varying ambient 

conditions in a controlled experiment
• Uncertainty in fuel composition can change results 

significantly
• Can be used for full scale fuel tanks for general 

predictions; complex geometry and flow field in actual 
tanks complicate the calculations
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