A Status Report on Turbulence Warning Technology

Rod Bogue - NASA Dryden Flight Research Center
October 24, 2001
A Status and Progress Report on Turbulence Warning Technology

Briefing Outline

- The Turbulence Hazard
 - Sources of Turbulence
 - Accident Statistics
 - Accident/Injury Characteristics
 - Cabin Accelerations
 - Costs
- Turbulence Issues
- Approach to Risk/Injury Reduction
 - Cabin Procedures/Training - Cabin Design
 - Warnings
- Warning Issues
 - Existing Warnings
 - Advanced Time

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Briefing Outline (cont.)

• Remote Warning Technology
 • General Principles/Operating Concept
 • Radar
 • Hardware/Testbed Aircraft
 • Operating Parameters
 • Warning Display
 • Flight Test Summary
 • Lidar
 • Hardware/Testbed Aircraft
 • Operating Parameters
 • Flight Test Display
 • Flight Test Summary

• Warning Technology Summary

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Sources of Turbulence

- **Natural Turbulence**
 - Convective Induced
 - Mountain-wave Induced
 - Jet-stream Induced

- **Man-Made Turbulence**
 - Enroute Wake Vortex

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Turbulence Accident Trends

Turbulence Accidents per Million Flights US Carriers, Based on Part 121 Definition
A Status and Progress Report on Turbulence Warning Technology

Serious/Fatal Turbulence Injury History

- Serious Injury
- Fatalities

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Aspects of Turbulence Accidents/Incidents

- Few commercial aviation fatalities (1 each 1987, 1990, 1997)
- Many serious **Flight Attendant** and Passenger injuries and numbers growing
 - Average 6-7 accidents and 8 serious injuries per year, 1980 to 1995
 - Sudden rise, 1995-2000 to 12 accidents and 16 serious injuries per year
 - 70 minor injuries for every serious injury (est.)
- Negligible aircraft damage and hull loss
- Numerous shallow but few data-rich accident/incidents
- Successful avoidance or mitigation of turbulence is heavily dependent upon information that is often:
 - Unavailable,
 - Inaccurate, or
 - Unreliable
Example of Severe Turbulence Encounter Cabin Acceleration

The cockpit saw this one 34 seconds before it happened; it injured 22 people.

Negative Gs lasted 3/8th seconds

5.5 seconds 2.6 ΔGs

1/2 second
A Status and Progress Report on Turbulence Warning Technology

Turbulence Costs
(Difficult to quantify)

- One Airline’s Experience
 “…on an annual basis it (AA’s turbulence costs) is in the double-digit millions of dollars….last year we had 235 workers compensation claims related to turbulence encounters; those claims resulted in some 7,000 days of injury-related disability or lost time…the equivalent of 21 work-years at American alone.”

- 50% of injuries are to Flight Attendants
 - Average 10,000 lost workdays/year through 1994
 - Average 15,000 lost workdays/year since 1994
 - For each injury, 11 workdays lost (est.)

- Estimated >$ 100M yearly

- One carrier averages 9 turbulence encounters resulting in 24 injuries per month

- Leading cause of in-flight injuries

- Major contributor to passenger’s fear of flying

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

Turbulence Issues

• Challenges
 • Characterization
 • Buildup & Decay cycle
 • Persistence
 • In-situ testing
 • Finding turbulence
 • Measurement standardization (Eddy Dissipation Rate /Cabin Acceleration)

• Understood
 • Injury-producing motion
 • Vertical Acceleration (-g most dangerous)
 • Rear cabin most susceptible
 • Protection strategy
 • Fasten seat belt!!!
 • Heed Crew Warnings
A Status and Progress Report on Turbulence Warning Technology

Coordinated Approach to Turbulence Injury Risk Reduction

2002 2006 2010

TIME

Improved Forecasting
Crew Training
Cabin Procedures
Reduce Exposure

Cabin Design
Avoidance

Look-ahead Detection

New Controls Technology
Reduce Cabin Accelerations

Injury Risk Reduction

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

An End-to-End Turbulence Warning System

- Detection Hardware
- Signal processing algorithm
- Turbulence hazard tables
- Turbulence Alert criteria
- Display/Alert

Significant Gust

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Current Turbulence Warnings

- **Forecasts**
 - Broad, non-specific location
 + Substantial work on-going and accuracy improving

- **Visual Cues**
 - Vicinity of Convective activity
 - Cirrus cloud patterns
 - Jet Stream boundaries
 - Mountain Waves

- **Pilot Reports**
 - Observing/Ownship Dependent
 - Subjective
 - Spotty Capture & Dissemination
 + Direct Experience
A Status and Progress Report on Turbulence Warning Technology

The Question of Warning Time

- Turbulence Severity?
- New Air Traffic Rules
- Improved Cabin Procedures
- Turbulence Persistence?

Warning Time Requirement?

Projected Technology Capability

- Reliability
- Forecast/Nowcast

Time

30 Sec 1 Min 5 Min 10 Min 30 Min 1 hour

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

General Principle of Doppler Radar/Lidar Turbulence Measurement

Relative wind induces a Doppler frequency shift in the backscattered light; this frequency shift is detected by the sensor.

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

Doppler Radar/Lidar Operating Concept

Aircraft Skin
Laser Transceiver
Transmitted Beam

Doppler Shifted Backscattered Signal
Aerosols

Airspeed measured along this axis

Transmitted frequency
Backscattered frequency

\[
A = \lambda \Delta f \quad T = \Delta A = \lambda \delta f
\]

Note: At long ranges L is determined by pulse length.
\(\delta f\) is an index of airspeed variation over length L.
A Status and Progress Report on Turbulence Warning Technology

NASA Langley B757 Radar Testbed Aircraft

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

Research Weather Radar

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

g-Loading (rms g) Event 191- 06

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Radar Flight Test Summary

- 4 flights totaling 15 hours on NASA 757
- Flight Conditions Encountered
 5,000-30,000 ft MSL altitude operation
 Mostly clear, occasional clouds
 Encountered moderate to severe turbulence
 18 Convective Events
 1 Severe Event with - g’s
A Status and Progress Report on Turbulence Warning Technology

NCAR Electra
Lidar Testbed Aircraft

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

NASA Dryden DC-8 Lidar Testbed Aircraft

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

Lidar on DC-8

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

DC-8 Outside Periscope

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
A Status and Progress Report on Turbulence Warning Technology

LIDAR Airspeed Results in Turbulence Encounter

- "Isolated" moderate turbulence region in light turbulence
- Detected ahead and observed as aircraft approached
- Moderate turbulence observed aboard aircraft (25 sec later)
- Aircraft traversed through turbulence and into smoother air

Sample Turbulence Encounter

International Aircraft Fire & Cabin Safety Research Conference 9/23-25/01
Lidar Flight Test Summary

- 5 flights totaling 15 hours on NCAR Electra
- Flight Conditions Encountered
 5,000-25,000 ft MSL altitude operation
 Mostly clear, occasional clouds
 Encountered light to moderate turbulence
 Mountain-wave-induced
 Convective
 Cloud/Virga

- 13 flights totaling 83 hours on NASA DC-8
- Flight Conditions Encountered
 - 24,000-39,000 ft MSL altitude operation
 - Mostly convective conditions, occasional dry air
 - Encountered light to severe turbulence in/out of cloud
Lidar Flight Test Summary (Cont.)

- Sensor readily capable of detecting light or stronger turbulence ahead of the aircraft
 - Measures apparent strength of turbulence as well as time to encounter
 - Positive correlation with on-board in-situ sensors
 - Range performance compares favorably with expectations
 - 4-6 miles for 11,000-15,000 ft MSL
 - 2 miles for 25,000-39,000 ft MSL and cloudless conditions
Turbulence Hazard Summary

- Turbulence is the leading cause of in-flight injuries and is estimated to cost the airline industry > $100M/year
- The turbulence hazard is not completely characterized from an atmospheric perspective but understanding is improving
- The approach to risk reduction includes cabin design, cabin procedures, improved forecasting as well as warning technology development
- Progress is being made with warning technology
 - Enhanced Weather Radar
 - Implemented with software change in existing Weather Radar sets
 - Most mature technology, Available 2-3 years
 - Lidar
 - Implemented with Lidar transceiver and signal processing hardware
 - Hardware integration an issue for existing fleet aircraft
 - Requires increased transmitted pulse energy
 - Available est. 5-7 years
Out-of-Scope “Turbulence”
Out-of-Scope “Turbulence” (cont.)