Recommendations for Injury Prevention in Transport Aviation Accidents

> Presented by: Lance C. Labun Authors: Anita Grierson Simula Technologies, Inc. Lisa Jones NASA Langley Research Center

Aviation Safety Program

Introduction

National Objective: to reduce the rate of fatal aviation accidents by 80% in 10 years #1 – Accident Avoidance #2 – Improved Crashworthiness

Purpose of This Research

To <u>identify</u> and <u>prioritize</u> the means to reduce injury and fatality in potentially survivable transport aviation accidents Exam ples of Previous Recomm endations

3-point restraints / shoulder harnesses Floor-to-seat connection and 16-G seating **Overhead bin attachments Fire retardation Decreased smoke and toxicity**

To Survive an Accident.. CREEP

Container – Maintain occupiable space
 Restraint – Maintain tie-down chain
 Energy – Remain within bounds of human tolerance
 Egress

Post-crash Survival

Research M ethods

Case Studies

- 11 accidents reviewed
- Team evaluation (medical and engineering)
- Critical technologies identified and prioritized

Database studies and additional evaluation of commercial rotorcraft and General Aviation aircraft were performed, but are not covered in this presentation

Accident Selection Criteria

"Partially survivable" = 1+ survivor and **1+ fatality** Accident dates: 1985-1994 Sufficient data for analysis, accident investigation is completed **Diversity of accident scenarios U.S.** operators on U.S. soil preferred

Accidents Review ed

YEAR	LOCATION	Operator and Aircraft	CAUSE	FATAL / SURVIVED
1989	Sioux City, IA	United DC-10-	Engine Failure	111/172
1988	DFW, TX	Delta 727-232	Operational	14/76
1989	Kegworth,	British Midland 737-	Engine Failure,	47/79
	England	400	Operational	
1991	Los Angeles, CA	Boeing 737	On-ground collision	22/69
1992	Flushing, NY	USAir Fokker 28- 4000	Icing / Take-off	27/24
1985	DFW, TX	Delta L1011-385-1	Weather	135/28
1987	Romulus, MI	Northwest MD-DC-9- 82	Operational / Take- off	155/1
1987	Denver, CO	Continental MD-DC- 9-14	Icing / Take-off	28/54
1994	Charlotte, NC	USAir MD-DC-9-14	Weather	37/20
1989	Flushing, NY	USAir Boeing 737- 400	Operational / Take- off	2/21
1990	Cove Neck, NY	Avianca Boeing 707- 321B	Landing, Fuel Exhaustion	73/85

Case Study Results and Analysis

Container Restraint Energy Management Egress and Environment **Post-crash Survival Special Considerations** - Child Passengers

Container

Key difference between survivable and not survivable accidents is occupiable space

In many scenarios, we know where the aircraft is most likely to break!

- Structural discontinuities

Minimal ability to affect extremely localized loading and loss of occupiable space (e.g., Flushing, NY, 1989)

1989 Sioux City

1989 Kegworth

Recomm endations

<image>

LAVS

GALLEYS

Restraint

SEAT

TRACK

SEAT

OCCUPANT

Failures mostly in early links of the tie-down chain

FLOOR

FUSELAGE

- Seats and restraints are important:
 - 9-G seats have often failed and tore out
 - 16-G seats have proven beneficial

Recom m endations

Long-term Recommendations

- Improved floor integrity (alternative load paths and out-of-plane loading)
- Increased seat track integrity (16-G structural)

Short-term Recommendations

- Limit track loading in existing systems (e.g., an EA device between 9-g seat and seat track)
- Improved pelvic and torso restraint that can limit loads transferred top floor (e.g., haulback reels, 3-point restraints and air bags, alternative seat and restraint designs)

Energy M anagem ent

Most serious injuries are head injury and loss of consciousness, thoracic injury, and lower extremity injury

Various mechanisms of injury including seating and restraint loading and airborne debris

Seating

Results:

- Impact with seat in front produced mostly head injuries with some thoracic injury
- Loss of consciousness can be critical

Recommendations:

- Delethalize seat backs
- Seek and apply metrics for unconsciousness
- Use 36 msec HIC so aviation R&D can be directly compared to automotive R&D

Low er Extrem ity In jury

Results:

 16-G seating: Lower extremity fractures from bending around front tube or direct impact when seats become detached
 Prevents ability to egress

Recommendations:

 Change test requirements to include femoral bending and tibial fracture

Airborne Debris

Results:

- Posterior head impact from baggage and overhead bins
- Shorter or 'protected' passenger received less severe injury than their neighbors

Recommendations:

- Delethalize baggage storage improve bins (16-G standard) or seek alternative baggage storage
- Increase seat back height and compartmentalization

Egress and Environm ent

Results:

- Egress relied upon chance in many circumstances
 - Inability to locate usable exits, particularly when severe structural damage occurred

- Usefulness of and flow through exits and slides particularly in non-level attitudes
- Fire, smoke, and toxicity were factors in accidents that were otherwise survivable

Recomm endations

Improve exit door integrity and function Increase the number and spacing of planned exits

Design in break points

Continued research and development in fire suppression, reduced flammability and toxicity, and alternative means to extend time to egress in fire scenarios

Post-crash Survival

Survivability does not end with egress Emergency response made a life-death difference (e.g., drownings, waiting for extrication, on-site triage)

Passengers cited well trained flight attendants as essential to their egress but often assistance did not continue once outside aircraft

SpecialConsiderations -Child Passengers

Repeated examples of loss of control of lapheld infant (e.g., Sioux City, Charlotte, Cove Neck NY, Denver)

- Survival of lap-held children is left to chance
- Children should be afforded <u>equivalent level</u> of safety as other passengers
 - Require ALL passengers to be restrained
 - Require child restraint devices to perform appropriately in aviation environment

Conclusions

Study limitations

- Accessibility of detailed information
 - Accident reports have a limited focus on occupant survivability issues
 - Limited injury and autopsy data was available
 - Too much focus on seating system and not on whole picture of survivability

 High variability in accident scenarios and small number of accidents limit ability to perform statistical analyses

GeneralRecomm endations

Cabin- or seat-mounted crash data recorders to provide data usable for occupant survivability evaluation Increased training and resources for accident survivability investigations Increased survivability requirements for new aircraft **Increased focus on short-term methods** for risk reduction

Conclusions

Accident	Occupiable	Restraint			Energy Management		Egress		Child	
	Space	Floor	Seat	Occupant	Seating	Baggage	Exits	Fire	Safety	
Sioux City	A			В	B/P	В	В	А	А	
1988 DFW							А	А		
Kegworth	A	А	B/P	В	А	А		Р		
Los Angeles							А	А		
1992 NY	Α	В	А		В	В		В		
1985 DFW	A							А		
Detroit	**				Р					
Denver	A	А	Α		В	В			А	
Charlotte	Α	А	А		В	В	В	А	А	
1989 NY	А									
1990 NY	Α		А		А				В	
A = Major cause of injury or fatality B = Minor cause of injury or fatality P = Preventative benefit clearly demonstrated ** = Accident was non-survivable										

Accident was non-survivable

Container is #1 priority for long-term improvement in survivability

Future Considerations

Additional Complications:

- Larger aircraft and increased load factors
- Aging aircraft population
- Aging passenger population
- Runway incursions / "land-and-hold-short"
- Increased pressure on pilots and airlines for ontime arrivals

Acknow ledgem ents

We gratefully acknowledge the assistance of the following people and organizations:
Dr. Dennis Shanahan and Mr. Richard Chandler
NASA Langley Research Center, CAMI, NTSB, FAA

Thank You!

Questions?

Crash brace position

Results:

- Appears to reduce severity of injury (data not clear)
- Internal Simula study: sufficient time to instruct brace position in 20-25% of accidents

Recommendation:

 More research and education is needed regarding best brace positions, particularly for obese and tall passengers or when particularly small seat pitches are used