Data Reduction and Its Impact on Test-Analysis Correlation

Karen H. Lyle
NASA Langley Research Center

Lindley W. Bark
MSC.Software Corporation

Third Triennial International Aircraft Fire and Cabin Safety Research Conference
October 22-25, 2001
Presentation Outline

• Overview

• Background

• Predicted and Measured Results

• Concluding remarks
Objective: Evaluate data analysis/signal processing technologies for crash applications to better quantify the accuracy of simulation results.

Motivation:
- Document modeling improvements
- Evaluate design configurations analytically
- Enable analysis to further aid certification process

Current Project Thrusts:
- Simple metallic beam and plate structures
- Representative advanced-concept, composite fuselage section
Background

Kinematic Model
- Less than 100 nodes
- Concentrated masses, beams and ‘crush’ springs (based on empirical information)
- Requires numerous approximations and significant engineering judgment
- Calculates structural loading
- Computationally inexpensive

Nonlinear Dynamic Finite Element Model
- 4,000-400,000 nodes
- Shell, beam, solid elements and concentrated masses
- Requires significant analytical expertise
- Calculates structural behavior
- Computationally expensive

Need efficient methods to reduce, evaluate, and correlate large amounts of data
Objective: Evaluate test and analysis correlation methods on simple structures with “known” responses

Metallic Beam and Plate Tests

- **Semi-cylindrical impactor:**
 - 4 x 4 in. cross-section
 - 24 in. long
 - 16 lb. weight

- **Imbedded steel plate provides flat mounting surface**

- **Test beam**

- **Test fixture**

- **36-in diameter concrete mounting base - 1400 lb.**
Fuselage Section Description

Pre-test Photograph

- Protective cabin structure
- Ballast masses
- Very stiff floor
- Crushable subfloor

Finite Element Model

- Dimensions: 60-in. diameter x 64-in. long
- Protective cabin: Foam with laminated composite face sheets
- Ballast: Ten 100-lb. lead weights
- Stiff floor: Provides global crushing of subfloor
- Subfloor: Foam with uniform crush properties
Section Test Summary

Test Conditions

- Designed for correlation with FEM, NOT concept evaluation
- Impact velocity 307 in/sec
- No roll, pitch or yaw
- 16-bit digital DAS
- 10 kHz sampling rate
- 73 accelerometers

Floor Instrumentation

- Seat rails
- 100-lb. lead mass
- Accelerometers
Instrumentation Details

- Densely instrumented structure enabled evaluation of effect of accelerometer placement
 - Location A - attachment of lead weights to seat rails, approximated as 50-lb concentrated mass on node.
 - Location B - Attached to seat rail with mounting block, approximated as 1/3-lb concentrated mass on node.
 - Location C - Mounted on block and adhered directly to floor, no concentrated mass at node.

- Known:
 - Global motion of stiff floor similar at all locations.
Sample Test Data
(Symmetric locations)

F = 100 Hz

F = 24 Hz

<table>
<thead>
<tr>
<th>Filtering Frequency, Hz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3.6</td>
</tr>
<tr>
<td>24</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>
Sample Predicted Results
(Symmetric locations)

F = 100 Hz

F = 24 Hz

<table>
<thead>
<tr>
<th>Filtering Frequency, Hz</th>
<th>Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>24</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Correlation of Test Data and Predictions

(Filtering Frequency = 100 Hz)

Why the discrepancy when no mass added to node?
Predicted Velocities
(10 kHz Sampling Rate)

“Integrated” velocities consistent with filtered accelerations, but not consistent with “Direct” velocities
Sample Time History

Predicted accelerations repeatable from “run” to “run”
Predicted Velocities
(1-step Sampling Rate)

No discrepancy between “Integrated” and “Direct” velocity values for data sampled every time step.
Effect of Sampling Rate on Filtered Accelerations

Under-sampled predictions can result in:
- unreliable and inaccurate correlations between measured and predicted
- erroneous modeling modifications
Maximum Accelerations
(Filter Frequency = 100 Hz)

Outboard Inboard Floor

Top View

Acceleration, g

Position

Measured
Predicted
Maximum Accelerations
(Filter Frequency = 100 Hz)

Outboard Inboard Floor

<table>
<thead>
<tr>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
</tr>
<tr>
<td>02</td>
</tr>
<tr>
<td>03</td>
</tr>
<tr>
<td>04</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
</tbody>
</table>

Measured Predicted

| Difference | --> 0.85 - 6.4 |
Maximum Accelerations

(Filter Frequency = 24 Hz)

Outboard Inboard Floor

Position

Acceleration, g

Measured
Predicted

Top View
Maximum Accelerations
(Filter Frequency = 24 Hz)

Difference → 3.2 - 5.5
1-D Dynamic Response Index (DRI)*

* DRI computed to evaluate closeness of results. DO NOT compare with human injury criteria.
Concluding Remarks

• High channel count valuable for identifying similarities and anomalies
• Several correlation methodologies evaluated
• Filtering frequency affects correlation evaluation
• Under-sampling:
 – Readily identified
 – More likely for stiff lightweight structures
 – More prevalent when predicting at measurement points
• Presentation of all locations on one figure:
 – Valuable for global modeling accuracy
 – Highlight subtle and pronounced differences between test and analysis
 – Allow evaluation of several quantities