Development of a Burnthrough Test Standard
For Thermal Acoustic Insulation

Tim Marker
FAA Technical Center
Manchester 737 Accident, 1985
Full-Scale Testing of Surplus Aircraft
Full-Scale Burnthrough Test Rig

TEST SECTION

Existing B707 Fuselage

Curved Steel Channel

Aluminum Skin

Steel Skin

Vertical Former

Floor Vents

Fire Pan

Existing B707 Fuselage

20'

12'

8'
Full-Scale Test Results Using Various Materials

- Aluminum Skin
- 0.42 lb/ft³ Fiberglass with Metallized PVF Film
- 0.42 lb/ft³ Fiberglass with Polyimide Film
- Fiberglass/Ceramic Paper with Metallized PVF Film
- Rigid Polyimide Foam/Ceramic/Quartzel
- Ceramic Fibers with Polyimide Film
- Oxidized Polyacrylonitrile Fiber with Polyimide Film
Laboratory Scale Test Development
Initial Lab-Scale Burnthrough Test Apparatus
Initial Lab-Scale Burnthrough Test Apparatus

- Test Box
- Sample Holder
- Insulation Sample
- Aluminum Skin
Initial Burnthrough Testing
Second Generation Curved Test Frame
Third Generation Frame with Aluminum Skin
Initial Blanket Installation Method

"X-mas Tree" Fastener
Washer
Cap Strip
Burnthrough
Field Blanket
Alum Skin
Hat-Shaped Stringer
Burnthrough
Curved Z Former
Cap Strip
Overlapped Insulation Attachment
Third Generation Test Frame
Third Generation Frame
With 24- by 24-inch Void
Third Generation Frame
Without Lower Skin
Proposed Combination Test Rig

Adjustable Angle

Burn Length Determination

Opening - Fire Entry
Finalized Test Frame
Heat Flux Measurement on Backface of Samples
Heat Flux Measurement on Backface of Samples

- Calorimeter 2
- Calorimeter 1
- Spring Clip Squeezes Insulation Sample
- Field Blanket
- Hat-Shaped Stringer
- Steel Z Former
- Burner Cone

Dimensions:
- 4" (102 mm)
- 6"
Finalized Test Rig
Typical Blanket Installation on Test Rig
Laboratory-Scale Test
Refinements to Calibration and Test Procedures
Individual Calibration Rigs
Data Collection Procedure is Critical

Effect of Soot Buildup on Calorimeter Performance
(2 minute warm-up away from calorimeter surface)

Date: 11/24/99

Time (minutes)

Heat Flux (Btu/ft² sec)
Data Collection Procedure is Critical

Average Rake Temperature Vs. Time
At Various Air Velocity Settings

Temperature (°F)

1600
1700
1800
1900
2000

Time (minutes)

0
2
4
6
8
10

Data Collection Period

Data Collection Period

1900 ft/min
2000 ft/min
2100 ft/min
2200 ft/min
2400 ft/min
Laboratory-Scale Test
Refinements to Burner Equipment
Different Types of Stators

2 3/4” I.D. 2 5/8” I.D.
C.W. C.W.

C.C.W.

4” O.D. 3 7/8” O.D.
No Disc Disc
Monarch H215 Internal Stator with Static Disc
Preferred Position of Igniters to Achieve Calibration

10-11 o’clock
Laboratory-Scale Test
Measurement of Intake Air Velocity
Park DPL Burner Air Intake
Intake Airbox Holding Air Velocity Meter
Intake Air Velocity Measurement System
Primary Factors Influencing Calibration/Test Results

- Air Intake Velocity
- Fuel Flowrate
- Proper Burner Components/Adjustments (stators, position of igniters, correct fuel nozzle)
- Instrumentation (type/size of thermocouple, calorimeter type, method of collecting/reducing data)
- Fuel Temperature
- Environmental Conditions (relative humidity, barometric pressure)
Burner Correlation With Full-Scale Test Results
Correlation Using 6 GPH Burner (Full-Scale vs. Lab-Scale)

Full Scale Tests in 707

Lab Scale Tests with Burner

Failure Time (Seconds)

- 0.63-Inch Alclad + 3 Layer Aerocoi
- 0.63-Inch Alclad + 4 Layer Aerocoi

- 2000 ft/min: 1:24 Avg, 1:38 Avg
- 2100 ft/min: 1:24 Avg, 1:37 Avg
- 2200 ft/min: 1:22 Avg, 1:37 Avg
Round Robin Testing

Objective:

To identify and correct problems with proposed burnthrough test equipment to ensure similarity between labs

Methodology:

Prove similarity of test equipment between labs through testing of identical samples

Participants:

7 Domestic Labs, 3 European Labs

Status:

4 round robins completed

Additional smaller round robins scheduled
Round Robin I Histogram

Round Robin I Material A Distribution

Avg = 102.9
Standard Dev = 68.8
Round Robin I Modified Histogram

Avg = 83.0
Standard Deviation = 28.0
Variety of Burner Components Used in Early Round Robins

Round Robin I & II

<table>
<thead>
<tr>
<th>Lab Code (A-J)</th>
<th>Internal Turbulator O.D. (inches)</th>
<th>Internal Turbulator Type</th>
<th>End Turbulator Rotation</th>
<th>End Turbulator I.D. (inches)</th>
<th>End Turbulator Type</th>
<th>Static Disc Used (Y/N)</th>
<th>Tabs Used (Y/N)</th>
<th>Nozzle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>Hago 6.00</td>
</tr>
<tr>
<td>B</td>
<td>CW 4.00?</td>
<td>Monarch 4L</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>?</td>
</tr>
<tr>
<td>C</td>
<td>N/A N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D</td>
<td>CW 4.00</td>
<td>Monarch 4 1/2 L</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>Monarch 2.00</td>
</tr>
<tr>
<td>E</td>
<td>CW 4.00</td>
<td>Monarch 4 1/2 L</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>F</td>
<td>CW 3.875</td>
<td>Monarch 3 7/8L</td>
<td>CW</td>
<td>2.625</td>
<td>Monarch F124A</td>
<td>Y</td>
<td>Y</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>G</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>H</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>I</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>Y</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>J</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>Y</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
</tbody>
</table>

Round Robin III

<table>
<thead>
<tr>
<th>Lab Code (A-J)</th>
<th>Internal Turbulator O.D. (inches)</th>
<th>Internal Turbulator Type</th>
<th>End Turbulator Rotation</th>
<th>End Turbulator I.D. (inches)</th>
<th>End Turbulator Type</th>
<th>Static Disc Used (Y/N)</th>
<th>Tabs Used (Y/N)</th>
<th>Nozzle Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>B</td>
<td>CCW 4.00</td>
<td>Monarch H215*</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>C</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>D</td>
<td>CCW 4.00</td>
<td>Monarch H215*</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>E</td>
<td>CCW 4.00</td>
<td>Monarch H215*</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>F</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>G</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>H</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>I</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
<tr>
<td>J</td>
<td>CCW 4.00</td>
<td>Monarch H215</td>
<td>CW</td>
<td>2.75</td>
<td>Monarch F124</td>
<td>N</td>
<td>N</td>
<td>Monarch 6.00 80° PL</td>
</tr>
</tbody>
</table>
Round Robin III Histogram

Average = 30 seconds

Standard Deviation = 12 seconds

Failure Range (Seconds)
Round Robin IV Histogram

Average = 28 seconds
Standard Deviation = 8 seconds
Standard Deviation Trend

- FG (0.60 lb³/ft)
- Oxidized Polyacrylonitrile

<table>
<thead>
<tr>
<th></th>
<th>RR I</th>
<th>RR II</th>
<th>RR III</th>
<th>RR IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Deviation (Seconds)</td>
<td>70</td>
<td>40</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusion, Round Robins I, II, III, and IV

Decreasing standard deviation trend result of:

Standardization of Calibration and Test Procedures

Standardization of Test Burner/Apparatus

Overall Increased Familiarization with Proposed Test Method
Future Considerations

Conduct additional round robin test series to fully refine test method

Calibration of heat flux transducers (completed)

Calibration of air velocity meters (current)

Standardization of air velocity measurement

Conduct laboratory scale tests to investigate installation requirements

Overlap at vertical formers

Overlap at horizontal seams

Attachment Methods

Conduct full-scale confirmation tests in support of Advisory Circular
Blanket Overlap Testing
Full-Scale Overlap Testing
Task Group Participants

Task Group Meeting: Wednesday morning 9:00

<table>
<thead>
<tr>
<th>Becky Wulliman</th>
<th>John Brooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Tompkins</td>
<td>Dan Trahan</td>
</tr>
<tr>
<td>Anne Mansuet</td>
<td>Khang Tran</td>
</tr>
<tr>
<td>Steve Morgan</td>
<td>Susahn Briggs</td>
</tr>
<tr>
<td>Hank Lutz</td>
<td>Yo Ishikawa</td>
</tr>
<tr>
<td>Kurt Doman</td>
<td>Alain Jacques</td>
</tr>
<tr>
<td>David Erb</td>
<td>Bob Gardner</td>
</tr>
<tr>
<td>Jim Clyne</td>
<td>Chad Miller</td>
</tr>
</tbody>
</table>