A Brief Status, Current Powerplant Halon Replacement Activity

Presented to:

The Combined International Aircraft Materials Fire Test & International Aircraft Systems Fire Protection Forum Meetings

By: Doug Ingerson

Federal Aviation Administration WJ Hughes Technical Center / Fire Safety Branch Atlantic City Int'l Airport, NJ USA tel : 609-485-4945 email : Douglas.A.Ingerson@faa.gov

Date: 18oct2023

Federal Aviation Administration

There are no product nor service endorsements made within this presentation. Corporate identification is made for the sake of completeness & transparency.

Presentation Purpose & Content

 ...a Brief Overview & Status on Local Powerplant Halon-Replacement Fire Testing^[2a]

Presentation contents...

- ★ Brief Overview of the Test Process
- ★ Illustrations of the Local Test fixtures
- ★ Tabular Listing of Candidate Results to Date
- ★ Background Reference Presentations

★ Appendices

[2a] known in short-hand as "MPSHRe/rev04", the "<u>Minimum Performance Standards for</u> <u>Halon 1301 Replacement in the Fire Extinguishing Agents/Systems of Civil Aircraft Engine</u> and Auxiliary Power Unit Compartments (MPSHRe rev04)"

Federal Aviation Administration

2

A Brief Test Process Overview

Proposed certification criteria from 2 revisions

- \bigstar directly relate to halon 1301^[3a] performance
- \bigstar based on replicate, multi-condition testing
 - concentration measurements \bigcirc
 - fire-suppression observations Ο
- ★ candidate's performance will equal or exceed CF3Br's
- \bigstar is a part of aircraft certification, although passing the MPSHRe does not guarantee certification

[3a] halon 1301 is CF3Br, bromotrifluoromethane; the 6%v/v halon 1301 concentration criterion from the FAA certification criteria is a significant contributor to the state of the art [SotA]; this CF3Br concentration criterion is analogous to a peak-inertion concentration, as derived from bench-scale testing & reported in literature.

Federal Aviation Administration

A Brief Test Process Overview [continued]

- MPSHRe/rev03 : 2003-2008, implicit empiricism
 - ★ rev03 built around CF3Br
 - ★ initially uninformed, tested to find parity, & then characterized it
 - ★ candidate firex^[4a] agents became less like state-of-theart CF3Br; i.e. CF3I, 2-BTP, C6F12O, NaHCO3 aerosol
 - ★ ...empiricism falters, rev03 retired

Federal Aviation Administration

4

A Brief Test Process Overview [continued]

- MPSHRe/rev04 : 2010-?, active, a proof-test
 - must know candidate firex agent's bench-scale/flameinhibition characteristics before commencing this testing
 - ★ if initial criteria test faulty, need to review situation...
 - ★ if candidate different than SotA :
 - o real-scale/high-fidelity demonstration testing is required
 - o based on dissimilarity between candidate circumstances & :
 - CF3Br
 - legacy aircraft-based storage/delivery methods
 - legacy concentration measurement technique; Statham-derivative...

Local Test Fixtures ~ generic nacelle fire simulator

Federal Aviation Administration

tration hal Aircraft Materials Fire Tes 6

Local Test Fixtures ~ FAA-owned 747SP's #2 JT9D

Federal Aviation Administration

Tabular Candidate Overview

Candidate [chemical, ASHRAE, & example product names]	Year[s] Any Testing Occurred In	MPSHRe Revision & Associated LEC ^[8a]	Comment[s]	
pentafluoroethane, C2HF5 HFC-125 Chemours FE-15	2003-2004	3, 17.6 %v/v 47.4 %m/m	\blacktriangleright LEC > CPIC ^[8b]	
iodotrifluoromethane, CF3I FIC-13I1 Ajay-SQM Group Triodide	2003-2004, 2006, 2019, 2021-2022	3 & 4, 7.1 % v/v 33.8 % m/m	 ► LEC ≈ CPIC ► atypical flame attachment ► defeated "version-2 cold" testing^[8c] 	
2-bromotrifluoropropene, C3H2BrF3 Halotron BrX	2004	3, none	 withdrawn before completion enhanced combustion, generated audible cues 	
dodecafluoro-2-methylpentan-3-one, C6F12O FK-5-1-12 3M Novec 1230	2006, 2011	3, 6.1 %v/v 42.8 %m/m	 LEC < CPIC; <u>ABNORMAL</u>; future action will spawn review atypical flame attachment failed "version-1 cold" testing^[8c] 	
sodium bicarbonate aerosol, NaHCO3 Collins Aerospace/Kidde Aerospace KSA	2007-2008, 2010-2012, 2018-?	3 & 4, ? g/m^3 ? % m/m	➤ work continues	
equal-mass blend, CO2 & C6F12O Parker-Meggitt Blend A	2014-2015	4, 30.6 % v/v 54.2 % m/m	blended composition requires added situational attention in the end-use	

[8a] LEC = Largest Equivalent Concentration from the MPSHRe testing. See Appendices A1 & A2 for mass concentration calculations included in this column.

[8b] CPIC = Candidate's Peak-Inertion Concentration. Recall, 6%v/v CF3Br is comparable to its peak-inertion concentration.

[8c] See Appendix B for high-level detail differentiating the 2 "cold" testing projects.

Federal Aviation Administration

8

Additional Background References

A. "Minimum Performance Standards for Halon 1301 Replacement in the Fire Extinguishing Agents/Systems of Civil Aircraft Engine and Auxiliary Power Unit Compartments (MPSHRe rev04)".

>>> FAA Fire Safety Website's International Aircraft Systems Fire Protection Forum webpages

https://www.fire.tc.faa.gov/pdf/systems/MPSErev04_MPSeRev04doc-02submtd.pdf

B. "Engine Nacelle Halon Replacement", 26oct2006.

>>> International Aircraft Systems Fire Protection Working Group meeting

https://www.fire.tc.faa.gov/pdf/systems/Oct06Meeting/Ingerson-1006-HalonReplacement.pdf

C. "Halon Replacement in the Civil Transport Aircraft Engine Nacelle (2013)", 5dec2013.

>>> Fifth Triennial International Fire & Cabin Safety Research Conference

https://www.fire.tc.faa.gov/2013Conference/files/Halon_Replacement_I/IngersonEngineHalonReplacement/IngersonHalon replacementenginePres.pdf

D. "Engine Nacelle, Halon Replacement Overview & Update", 31oct2018.

>>> International Aircraft Systems Fire Protection Forum meeting

https://www.fire.tc.faa.gov/pdf/systems/Oct18Meeting/Ingerson-1018-PwrplantHalRepOvrview.pdf

E. "Investigating Powerplant Halon Replacement in a Generic Nacelle Fire Simulator", 18oct2022.

>>> The Tenth Triennial International Fire & Cabin Safety Research Conference

https://www.fire.tc.faa.gov/2022Conference/files/Powerplant_Propulsion_Fire_Protection_I/IngersonGenericNacelle/Ingers on_GenericNacelle_Pres.pdf

9

The End, Thank You, & Good day.

Federal Aviation Administration

10

Appendices

- □ Appendix A1 ~ mass concentrations, pure gaseous
- □ Appendix A2 ~ mass concentrations, blended gaseous
- □ Appendix B ~ versions of "cold" testing...

Federal Aviation Administration

11

Appendix A1 ~ mass concentrations, pure gaseous

$$\begin{split} \text{Given a system of } V_{T} \text{ at } T \And P \text{ with } Y_{FA}, \And \text{ balance is air...} \\ & m_{A} = P* \left\{ \begin{array}{l} V_{T}*\left[1-Y_{FA}\right] \right\} / \left[\begin{array}{l} R_{A}*T \right] \\ & m_{FA} = V_{T}*Y_{FA}*D_{FAv} \\ & X_{FA} = m_{FA}/\left[\begin{array}{l} m_{FA}+m_{A} \end{array} \right] \\ \end{split} \\ \\ & D_{FAv} \left[kg/m^{A} \right] = 1 / \left[\begin{array}{l} a+b*T[^{\circ}C] \right] \\ & \text{firex agent : } a, b \\ & CF3Br^{[12a]}: \ 0.14781, \ 0.000567 \\ & CF3I^{[12b]}: \ 0.1138, \ 0.0005 \\ & C6F12O^{[12b]}: \ 0.0664, \ 0.0002741 \\ \end{split}$$

Given : P=101.3 kPa, T=298.15 K, V=1 m^3, R_A = 0.287 kJ / [kg K]								
frx	volume		D _{FAv}	m _{FA}	m _A	mass		
agent	concentration	Y_{FA}	[kg/m^3]	[kg]	[kg]	concentration		
CF3Br	6.0	0.060	6.17	0.370	1.11	25.0		
C2HF5	17.6	0.176	5.00	0.880	0.976	47.4		
CF3I	7.1	0.071	7.92	0.562	1.10	33.8		
C6F12O	6.1	0.061	13.6	0.830	1.11	42.8		

[12a] National Fire Protection Association, 1989, "NFPA 12A Standard on Halon 1301 Fire Extinguishing Systems 1989 Edition", Quincy, MA; table 2-5.2, pg. 12A-18.
[12b] National Fire Protection Association, 2008, "NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems 2008 Edition", Quincy, MA; Appendix A, tables A.5.5.1.

Federal Aviation Administration

12

Appendix A2 ~ mass concentrations, blended gaseous

 $\begin{array}{l} \mbox{Given a system of } V_{T} \mbox{ at } T \mbox{ \& P with } Y_{BFA} \mbox{ \& balance is air...} \\ m_{A} = P * \{ V_{T} * [1 - Y_{BFA}] \} / [R_{A} * T] \\ \mbox{for Blend } A, \mbox{ } m_{CO2} = m_{FK} \mbox{ \& all is vaporous} \\ V_{BFA} = V_{T} * Y_{BFA} = V_{CO2v} + V_{FKv} = V_{CO2} + V_{FK} \\ ... \ V * D = m \\ = m_{CO2} / D_{CO2} + m_{FK} / D_{FK} \\ ... \ m_{CO2} = m_{FK} \\ = m_{CO2} * [1 / D_{CO2} + 1 / D_{FK}] \\ m_{CO2} = m_{FK} = V_{BFA} / [1 / D_{CO2} + 1 / D_{FK}] \\ M_{BFA} = [\ m_{CO2} + m_{FK}] / [\ m_{CO2} + m_{FK} + m_{A}] \\ \end{array}$

firex agent [reference] : a, b C6F12O^[12b] : 0.0664, 0.0002741

$$\begin{split} D_{CO2v} \; [kg/m^3] \; = \; m_{CO2} \; / \; V_{CO2} \; = \; P \; / \; [\; R_{CO2} \; * \; T \;] \\ ...via \; Ideal \; Gas \; Law, \; PV \; = \; mRT; \; m/V \; = \; P \; / \; [\; R \; * \; T \;] \;] \\ R_{CO2} \; = \; 0.18892 \; kJ \; / \; [\; kg \; K \;] \end{split}$$

Given : P=101.3 kPa, T=298.15 K, V=1 m^3, $R_A = 0.287$ kJ / [kg K]								
frx	volume		D _{FAv}	m	m _A	mass		
agent	concentration	Y _{FA}	[kg/m^3]	[kg]	[kg]	concentration		
Blend A	30.6	0.306	3.18	0.973	0.822	54.2		
C6F12O	3.56	0.0356	13.6	0.486	0.822	27.1		
CO2	27.0	0.270	1.80	0.486	0.822	27.1		

[12b] National Fire Protection Association, 2008, "NFPA 2001 Standard on Clean Agent Fire Extinguishing Systems 2008 Edition", Quincy, MA; Appendix A, tables A.5.5.1.

Federal Aviation Administration

13

Appendix B ~ versions of "cold" testing...

[14a] FAA AC 20-100 : Advisory Circular 20-100, 1977, "General Guidelines for Measuring Fire-Extinguishing Agent Concentrations in Powerplant Compartments", United States Department of Transportation, Federal Aviation Administration, Washington, D.C.
 [14b] "colder_cool" indicates thermal gradient from 12:00/"colder" to 06:00/"cool";
 "colder"≈ -94°F/-70°C, "cool"≈ +59°F/+15°C; measured "chilled" temperatures -80°C to +25°C

Federal Aviation Administration

14