Enhanced Cargo Compartment Fire Detection: Passive Radio Frequency Identification (RFID)

Presented to: International Aircraft Systems Fire Protection Forum

By: Matthew Karp

Date: October 18, 2023

Federal Aviation Administration

Introduction

- **Background:** Unit Load Devices (ULDs) are integral for cargo transportation in aviation. However, their design inadvertently conceals smoke, hindering timely fire detection.
- **Implications:** Concealed fires have led to incidents with overwhelmed onboard fire suppression systems, resulting in tragic accidents.
- **Problem Statement:** The lack of a cost-effective, early fire detection solution remains an unresolved challenge. This increases risks associated with fire outbreaks in ULDs.
- **Objective:** This research is aims to create a cost-efficient, fast, and precise fire detection system to significantly enhance aircraft fire safety.
- **Significance:** Addressing fire detection problems in ULDs is crucial for preventing accidents, protecting cargo, and enhancing air travel safety.

Limitations

- **Ground experiments:** Conducted experiments on the ground, which may differ from conditions within in-flight aircraft cargo compartments.
- **Empty ULD:** Experiments were performed in an empty ULD and may vary from ULDs loaded with cargo.
- **Single ULD style:** Experiments utilized a single style of ULD. However, ULDs come in diverse shapes, sizes, and materials.'

ULD overview

The main purpose of a ULD is to secure cargo inside of an aircraft so that the cargo does not move during flight.

- Types of ULDs and materials
 - All aluminum
 - Aluminum frame and polymer panels
 - <u>Aluminum frame and fire resistant panels</u>
 - Enclosed container (top)
 - Palletized load (bottom)

Enclosed fire resistant container (FRC) ULD

Palletized load fire containment cover (FCC) ULD

Recent catastrophic aircraft fires

• Between 2006 and 2011, three catastrophic in-flight aircraft fires originated inside of ULDs [1].

- These incidents underline the importance of early fire detection in cargo compartments.
- Lithium batteries are a notable risk factor, significantly escalating fire hazards.
- Between March 3, 2006 and July 13, 2022, there were 98 aviation related incidents involving lithium batteries on Cargo aircraft [2].

Time delays in ULD fire detection

Time delays in fire detection:

- Significant time delay from the start of the fire inside the ULD to detection outside.
- Range: 2.5 18.5 minutes from fire inside the ULD to detection outside of ULD.

Rapid Fire Growth:

- The growth of fires after becoming detectable can be extremely fast.
- Range: 1.9 to 10.5 minutes from detection outside of ULD to peak heat release outside of ULD.

Implications:

- Concludes that significant damage to an aircraft can occur shortly after a detectable fire.
- Longer delays may be experienced with palletized ULD.

Smoke exiting rigid ULD [3]

[5] S. Chin, "The Scalability of Smoke Detectors and the Viability of New Detection Methods in Aircraft," Federal Aviation Administration, Atlantic City, NJ, 2019.

[6] J. Wood, "Strategies for Improved Fire Detection Response Times in Aircraft Cargo Compartments," Federal Aviation Administration, Atlantic City, NJ, 2020.

^[3] National Transportation Safety Board, "Report No. 12-019," Washington D.C., 2012.

^[4] T. Wilk, "Smoke Detection Delay Inside a Cargo Container," Federal Aviation Administration (Unpublished), Atlantic City, NJ, 204.

ULD fire detection systems

Air sampling smoke detector (ASSD)

Battery powered wireless smoke detector

Telair aircraft power drive heat detector

FedEx Express infrared sensor fire detector

- [5] S. Chin, "The Scalability of Smoke Detectors and the Viability of New Detection Methods in Aircraft," Federal Aviation Administration, Atlantic City, NJ, 2019.
- [6] J. Wood, "Strategies for Improved Fire Detection Response Times in Aircraft Cargo Compartments," Federal Aviation Administration, Atlantic City, NJ, 2020.
- [7] Telair, "CONTACT-LESS ULD TEMPERATURE SENSING WARNING SYSTEM," [Online]. Available: https://telair.com/portfolio-item/contact-less-uld-temperature-sensing-warning-system/?nowprocket=1. [Accessed 13 02 2022].
- [8] Federal Aviation Administration, "VENTS WITH SMOKE, FIRE, EXTREME HEAT OR EXPLOSION INVOLVING LITHIUM BATTERIES," 30 June 2021. [Online]. Available:

https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf. [Accessed 6 July 2021].

Cost/benefit of current ULD fire detection

Additional time for emergency landing decision making

High costs for over one million ULDs currently in use

Issues with current technology:

- **Battery Changes:** Wireless smoke detectors need frequent battery replacements.
- **Tubing Maintenance:** ASSD systems require regular tubing installation/removal.

[9] International Air Transport Association, "Unit Load Devices (ULD)," [Online]. Available: https://www.iata.org/en/programs/cargo/unit-loaddevices/#:~:text=With%20about%201%20million%20aircraft%20ULDs%20in%20service,aircraft%20parts% 20and%20directly%20contribute%20to%20flight%20safety.. [Accessed 14 02 2022].

UHF RFID overview

- **Inexpensive:** Cost-effective solution for various applications.
- **Communication:** Utilizes electromagnetic radio waves for communication with readers via antennas.
- Material compatibility: Reads through composites but not through metal.
- **Passive tags:** Integrated circuits (IC) in passive tags are powered solely b received electromagnetic waves.
- **Communication method:** Employs backscattered communication to interact with the reader.
- **Non-line of sight:** Can collect data from multiple tags (approximately 30 reads/second) without requiring a direct line of sight.
- **Sensor capabilities:** Possible to sense physical parameters such as temperature and location.

UHF RFID basic schematic

Temperature sensing tag overview

- Passive wireless sensor IC
- On-chip temperature sensor
- User-accessible memory for data storage
- **Range**: -40°C to 125°C
- Accuracy: ±0.5°C (30 to 60°C)

Temperature sensing tag

Test setup

ULD configuration

- Fire ULD
 - This ULD is contains either a controlled or real fire scenario
 - It includes a light obscuration meter to measure smoke production and temperature sensors to measure heat production
- Reference ULD
 - This ULD serves as a control unit without any heat input
 - It is instrumented with temperature sensors to measure baseline temperature

Fire ULD (left) and reference ULD (right)

Test setup continued

Test setup components

- Mock cargo compartment ceiling
 - 6.1m x 3.7m x 2.1m (L x W x H)
 - Positioned 7.6cm above the ULDs
 - Perimeter wrapped in vinyl cover
- RFID readers
 - One reader is positioned directly above the fire ULD
 - One reader is positioned directly above the reference ULD

Mock cargo compartment

Varying fuel source

Controlled fire scenario

Electric heater and smoke generator

Real fire scenarios

Self sustained smolder

Lithium ion cells

Electric heater and smoke generator test

- **Smoke Generator:** Positioned externally, piped to deliver cold smoke inside the ULD.
- **Smoke output:** Standardized for certifying aircraft cargo compartment smoke detection systems.
- **Heater:** Positioned at the interior center floor of the ULD.
- **Heater output:** varied using a variable AC transformer.
- This setup is intended to simulate and evaluate fire detection under controlled heating conditions.

Smoke generator providing consistent smoke

Smoldering fire test setup

- **Pipe:** Aluminum, 15.24cm diameter, 58.88cm length.
- **Position:** Vertical, 33cm above ground.
- **Insulation**: 5.08cm thick Mineral Wool, R-value 8.7.
- Fuel source: 620g low ash hardwood pellets.
- Ignition: Pellets ignited at the bottom using fire.
- **Purpose:** To sustain a smolder and progressively intensify the fire throughout the test duration without added heat.

Insulated aluminum pipe with smoldering wood pellets

Lithium-ion battery fire test setup

- Battery: Two lithium cobalt oxide pouch cells
- **Battery capacities:** 5.48Wh and 6.6Wh
- State of charge: 100%
- **Insulation:** Wrapped on five sides with 3.8cm thick ceramic fiber insulation board
- **Ignition:** User activated relay for short circuit. This can lead to thermal runaway in lithium-ion batteries by allowing excessive current flow, resulting in uncontrollable heating.
- **Purpose:** To initiate thermal lithium-ion thermal runaway without added heat.

Schematic of short circuit battery and switch (left) Battery insulation for testing (right)

Sensor configuration

Fire ULD

- Interior ceiling sensors (located at ULD center)
 - One sensor positioned on the ULD ceiling (0mm)
 - Four sensors attached to mounts on the ceiling at varying heights (6.4mm, 25.4mm, 50.8mm, and 76.2mm)
- Exterior ceiling sensor (located at ULD center)
 - One sensor positioned on the ULD ceiling (-3.175mm)

Reference ULD

- Interior ceiling sensor (located at ULD center)
 - One sensor attached to a mount on the ceiling (6.4mm)

The purpose of the mounts is to reduce heat loss from conduction to the ULD surface.

ULD temperature sensor placement

17

Smoke sensor configuration

Components

- Light obscuration meter: Uses 2.3mW 670nm lasers and silicon diode light sensors to measure light obscuration.
- 1.2m distance between the lasers and the light sensors

Locations

- Fire ULD: One light obscuration meter positioned at the ceiling
- **Mock cargo compartment:** Five additional light obscuration meters positioned along the ceiling of the ceiling

Smoke detection threshold

 Threshold:12.5 percent light obscuration per meter (%obs/m) used as the smoke detection threshold these experiments.

Light obscuration meter locations

Future tests

- **In-flight tests:** Future tests should incorporate in-flight tests and data should be reevaluated to determine if ground test activation thresholds are appropriate during flight.
- Loaded ULDs: Experiments should be repeated using ULDs loaded with cargo to account for potential variations in fire detection under varying conditions.
- **ULD variety:** To enhance the study's applicability, experiments should encompass a variety of ULD styles, considering different shapes, sizes, and materials commonly used in the aviation industry.

Propose solution for early ULD fire detection June 2021 – March 2022 Review RFID technology, ULDs, and fire detection literature

Setup and analyze experiments January 2024

Release final report

References

- [1] National Transportation Safety Board, "Safety Recommendation A-12 -68 through -70," Washington, D.C., 2012.
- [2] https://www.faa.gov/hazmat/resources/lithium_batteries/incidents
- [3] National Transportation Safety Board, "Report No. 12-019," Washington D.C., 2012.
- [4] T. Wilk, "Smoke Detection Delay Inside a Cargo Container," Federal Aviation Administration (Unpublished), Atlantic City, NJ, 204.
- [5] S. Chin, "The Scalability of Smoke Detectors and the Viability of New Detection Methods in Aircraft," Federal Aviation Administration, Atlantic City, NJ, 2019.
- [6] J. Wood, "Strategies for Improved Fire Detection Response Times in Aircraft Cargo Compartments," Federal Aviation Administration, Atlantic City, NJ, 2020
- [7] Telair, "CONTACT-LESS ULD TEMPERATURE SENSING WARNING SYSTEM," [Online]. Available: https://telair.com/portfolio-item/contact-less-uld-temperature-sensing-warning-system/?nowprocket=1. [Accessed 13 02 2022].
- [8] Federal Aviation Administration, "VENTS WITH SMOKE, FIRE, EXTREME HEAT OR EXPLOSION INVOLVING LITHIUM BATTERIES," 30 June 2021. [Online]. Available: https://www.faa.gov/hazmat/resources/lithium_batteries/media/Battery_incident_chart.pdf. [Accessed 6 July 2021].
- [9] International Air Transport Association, "Unit Load Devices (ULD)," [Online]. Available: https://www.iata.org/en/programs/cargo/unit-loaddevices/#:~:text=With%20about%201%20million%20aircraft%20ULDs%20in%20service,aircraft%20parts%20and%20directly%20contribute%20to%20flight%20safety.. [Accessed 14 02 2022].
- [10] K. Finkenzeller, RFID Handbook Second Edition, West Sussex, England: John Wiley & Sons Ltd., 2003

Questions and Answers

- Matthew Karp
- FAA AXH-800
- Matthew.Karp@faa.gov
- 609-485-4538

