Update For Sonic Burner Coordination For Use Of Testing Powerplant Components

Presented to: International Aircraft Systems Fire Protection Forum (IASFPF)

By: Aeon Brown

Date: October 2023

Federal Aviation Administration

Introduction

 Non-regulatory meeting to share experience with users of the Sonic Burner

 Continue comparative studies of the performance of the Sonic Burner compared to that of the legacy burners

Background

- The FAA and industry has been working to adopt the Sonic Burner for powerplant testing
- Concerns of repeatability of performance
- Concerns of high heat flux

Burners Studied At The FAA Tech Center

• Park 3400 DPL

FAA Sonic Burner

Carlin Burner

Federal Aviation Administration

Calibration Parameters

- Described in AC 20-135
 - 2000 °F average flame temperature
 - 4500 BTU/ft²-hr. Minimum heat rate

Determination of Sonic Burner Settings

 Observe the performance of a legacy burner

 Configure the Sonic Burner to produce similar results

0.125" 2024-T3 Aluminum

Test Plan

- Conduct a series of burn through tests of Aluminum Panels with the Park Burner at the prescribed calibration parameters
- Calibrate the Sonic burner to replicate the performance of the Park burner
- Replicate the performance of the Park Burner with the Carlin Burner at the prescribed calibration parameters.

Flame Temperature Calibration Method

- Allow 2-min warmup/stabilize
 flame
- Move burner into prescribed position in front of Thermocouple Rake
- Allow flames to soak thermocouple rake for 2-min before monitoring temperatures of each thermocouple once every second averaged for 30-seconds

Heat Flux Calibration Method

- Allow 2-min warmup/stabilize
 flame
- Move burner into prescribed position of heat transfer measurement device's copper tube
- Start 3-min average of btu recording after flames have soak copper tube for 2-min or a reading of 4500 BTU has been achieved

Sonic Burner Settings

Fuel Pressure	Air Pressure	Fuel Flow Rate	Air Flow Rate	Delavan Nozzle
(PSI)	(PSI)	(GPH)	(CFM)	Type
100±1	52±1	2.5	57	Type W/80º/2.5GPH

Calibration Results Average Flame Temperature

Avg Flame Temp Park Vs Sonic Vs Carlin

Calibration Results Heat Flux

Average Heat Flux Park Vs Sonic Vs Carlin

Calibration Results Burn Through Time

Burnthrough Time Park Vs Sonic Vs Carlin

Image Comparison of Burn Through between Burners

Park Burner

Sonic Burner

Carlin Burner

Observation

- Sonic Burner can be calibrated to replicate performance of the Park Burner
- Sonic Burner Calibration temperatures were approximately 15 – 50 degrees less than prescribed 2000 °F
- Carlin Burner burned through the aluminum sample faster than the Park, and Sonic Burner
- Park, and Sonic Burner has similar burn through of the aluminum panel.
- Carlin Burner burns small hole in the lower left quadrant of the sample

Future Study

- Investigate the flame retention head of the Carlin Burner
- Investigate other options of heat flux mapping other than single line copper tube

Contact Information:

Aeon Brown 609-485-4365 Aeon.S.Brown@faa.gov

