DGA Aeronautical Systems

Fire Safety Department

POWERPLANT Fire tests

Assessment of the ability of plate thermocouples to check a burner flame

MINISTERE

RR 2014

Significant differences on Burnthrough times => Sonic settings produced more sever flame than Old Generation Burners

Up to 30% higher

IASFPF meeting (EASA – May 2018)

RR 2014

Comparison Sonic Burner vs Old generation burners => Important discrepancies in lab results

MINISTERE

DGA 2016

Following that round robin, two conclusions

- Copper tube calorimeter is not reliable to check or calibrate a flame intended to be applied on large plate sample or equipment,
- Slug type" measurement methods are more appropriate to characterise, calibrate or just check the thermal power of burner flames

DGA 2016 : Evaluation of another kind of Slug thermometer

Plate Thermocouple

- Commonly used to control T° in Fire Resistance Furnaces according to naval and building regulations (Bulkhead and door Fire Resistance Tests),
- Widely studied by SP Technical Research Institute of Sweden to calculate incident heat-flux

MINISTERE

Design		~	
Application	Fire testing		
Requirements	According to ISO 834 EN 1363 Part 1		
Material	Special treated heat resistant Plate		
Dimensions	100 x 100 x 10 mm		
Center part	Specially treated for optimal cosine sensitivity		
Connection	1/4 BSP female		
Sheath			
Construction	Mineral insulated		
Material	Inconel 600	/// N	
Insulation	MgO	///	
Diameter *D*	1 mm	111	
Length "L"	2000 mm		1
Lead wire	water for the test of the		
(T-52+0.0-C	PTPE insulated		
	flexible thermocouple wire,		
	braiding 260 °C		
Wire length "K"	1000 mm		
Element			
Calibration	Type K thermocouple		1
Accuracy	According (EC 584-1 / DIN 43710	4	7
Thermospupie	Pre-aged		
Hot junction	insulated		
Testing	Tested at 500 Volt/20 *C		
Insulation resistance	Minimum 100 M ohm		

BACKGROUND DGA 2016

Flame measurements with FAA slug calorimeter and Plate thermocouples conducted to good agreement

Ξ;

T (°C) vs Time (s)

Slope : 9.81 °C's [100 to 250°C]

SONIC

300

250

200

150

100

50

152 to 16.7 °Cs

400

T (°C) vs Time (s)

100 to 400 C]

PARK

=> Higher Slope in T° increase for the Sonic Burner (+24%)

T (°C) vs Time (s)

PARK

WORK IN PROGRESS

Objective: Assess the ability of Plate Thermocouples (PTc) to compare oil burner flames

- Reference: Park burner with AC 20.135 settings
- Repeatability of measurements : 15 tests conducted
- Correlation (or not) with
 - BTU heat transfer device (Copper tube calorimeter)
 - Water-cooled calorimeter (Gardon)
 - Rack of 7 thermocouples
- Effect of test configurations: 2 configurations
 - Free flame / Free PTc

MINISTER

Impacting flame / 3 embedded PTc

MEASUREMENT DEVICES

Rack of 7 thermocouples

MINISTÈRE DES ARMÉES

DGA

 Copper Tube Calorimeter

 Water-cooled Calorimeter

Plate Thermocouples (6 PTc tested)

TEST / PROBE CONFIGURATIONS

Free surrounding space (1 or 3 probes)

MINISTÈRE DES ARMÉES

DG

Plate Thermocouples

Water-cooled Calorimeter

3 embedded probes

Plate Thermocouples

Water-cooled Calorimeter

CALIBRATIONS

Tests conducted with Park burner – calibration with copper tube or Gardon HFM

- Settings according to AC 20.135
- Calibration :

MINISTERE DES ARMÉES

- Heat Flux (Copper Tube) : before each test
- Temperature : once a day

Average HF : 4541 BTU/h Standard deviation : 1,5% (68 BTU/h)

Average T° : 1069 °C (1957 F) Standard deviation : 1% (11 °C / 20 F)

MINISTERE

PTc equipped with 5 Thermocouples on back side to assess temperature homogeneity

- T° stabilisation around 900 °C
- Lower slope of T° on central Tc
- Average T° of 5 Tc is up to 5% to 8% over central T°

PTc Temperature Data : Temperature Slope Analysis

Plate Thermotopale equiped with STE Details STErry (Senator			R_N
			a
		T° recording	22
/		Trecording	
/	108		

- Increase of T° is function of PTc thermal balance
- In the 1st time of flame exposure (before T° becomes significant), slope of increasing Temperature mainly depends on flame thermal power

MINISTERE DES ARMÉES Good linearity on the 1st 15 seconds (up to 350 / 400°C)

PTc Temperature Data : Temperature Slope Analysis

 Measurements show good repeatability for each test configuration With significant differences depending on the various test configurations (good indicator of discriminating ability)

13

PTc Temperature Data : **Temperature Slope Analysis**

Configurations with 3 PTc both show a peak of Slope T°

MINISTERE DES ARMÉES

DG

Idea is to compare (T° slope)_{max} from all configuration tests

(T° slope)_{max} vs BTU/h (Thermal Power from Copper Tube)

No correlation T° slope / BTU/h
 PTc T° Slope : Potentially good discriminating ability

"Wall effect" on flame flow ? (Impacting flame)
Housing effect on measurement ?

MINISTERE

3 embedded PTc

Free surrounding

Free surrounding

Flame homogeneity

Water-cooled Calorimeter measurements:

Confirm a "lower" thermal power on left side

But not the highest power at the centre

(note that exposed surface of PTc is significantly higher and can reflect a hot spot not detected by the calorimeter)

Edge effect on measurement

MINISTÈRE DES ARMÉES

DG

Still to be investigated (in progress)

Effect of heat exchange on measurement? (edges and rear metallic parts of PTc)

IASFPF meeting (EASA – May 2018)

CONCLUSIONS

Plate Thermocouples have been tested under two configurations (free surrounding space or embedded into insulation). Temperatures were compared to calibration data from copper tube calorimeter and Gardon water-cooled calorimeter.

- More appropriate to assess flame setting on a large surface (3 PTc aligned = 320 mm x 100 mm)
- Able to check flame homogeneity (horizontal symmetry)
- More representative of the flame exposure of most of the specimens to be tested
 - Especially sheet/plate specimens
 - Except hoses

UNBTERF

Additional tests needed to refine and validate the choice of criteria to be used in order to check a burner flame (sensibility to flame variations)

NEXT TESTS

Test data from embedded & free PTc (in progress)

(effect of metallic edges on temperature measurement)

Define PTc's criteria to check the flame

(check sensibility of criteria to flame variations)

Intentional bad flame settings

• Flame check

MINISTERE

- Burnthrough tests
- Find / Confirm correlation "Burnthrough time / PTc data"

Check other DGA PARK burners

- Cargo liner test
- Seat Cushion test
- Burnthrough test

9.1 to 18.2 W/cm² (8.0 to 16 BTU/ft².s) 927 °C to 1038 °C (1700 to 1900 F)

Any other ideas ???

or

19

NEXT STEPS

- Supply and evaluate PTc commercially available from different suppliers (our currents PTc have been built on demand)
- SONIC / PARK Burners :
 - Find SONIC settings providing same PTc response as Park burner
 - Realize burnthrough fire tests to compare burnthrough times for the 2 burners
- SONIC Burner Round Robin (if new settings lead to same burnthrough times)
- Plate Thermocouple Round Robin:
 - Any participating lab would buy PTc
 - PTc flame characterisation
 - Burnthrough fire tests

DGA Aeronautical Systems

Fire Safety Department

Serge LE NEVE DGA Aeronautical Systems Serge.le-neve@intradef.gouv.fr

